Article body

Le fibrinogène est le facteur de coagulation le plus abondant dans le plasma (2-4 g/l). Après sa conversion en fibrine sous l’action de la thrombine, il joue un rôle primordial dans le processus de coagulation puisqu’il constitue la base du caillot sanguin et permet l’agrégation plaquettaire. La molécule, principalement synthétisée par les hépatocytes, est un hexamère constitué de deux copies de trois chaînes polypeptidiques, Aα, Bβ et γ (Figure 1A), chacune codée par un gène distinct, FGA, FGB et FGG, respectivement. Les trois gènes se situent dans une région d’approximativement 50 kb sur le chromosome 4 (Figure 1). L’assemblage des chaînes se déroule de manière séquentielle dans le réticulum endoplasmique, avec la formation de complexes intermédiaires (Aαγ) ou (Bβγ), l’ajout d’une troisième chaîne (Bβ ou Aα, respectivement), et la dimérisation des trimères pour former l’hexamère (AαBβγ)2. Celui-ci est ensuite transporté vers l’appareil de Golgi où il subit de nombreuses modifications post-traductionnelles, telles que phosphorylation, hydroxylation, etc. Les chaînes Bβ et γ présentent à leur extrémité carboxy-terminale un domaine globulaire homologue (βC et γC, respectivement), conservé dans diverses protéines (telles que les angioprotéines) chez plusieurs espèces animales. Ces domaines homologues, composés d’environ 250 acides aminés, sont connus sous le nom de FReD (fibrinogen-related domain).

Figure 1

A. Représentation de la protéine du fibrinogène du poulet, d’après sa cristallographie à une résolution de 2,7

A. Représentation de la protéine du fibrinogène du poulet, d’après sa cristallographie à une résolution de 2,7

A [12]. Les domaines globulaires homologues βC et γC sont indiqués. Les chaînes Aα sont en vert, les chaînes Bβ en violet, et les chaînes γ en bleu. B. Structure du locus des gènes codant pour le fibrinogène humain, et mutations identifiées comme responsables de l’afibrinogénémie à l’état homozygote ou hétérozygote composite, et de l’hypofibrinogénémie à l’état hétérozygote (en italique). Ne figurent pas les mutations menant à une hypodysfibrinogénémie (résultant d’un défaut du fibrinogène combinant expression réduite et activité fonctionnelle altérée). Les mutations décrites comme affectant spécifiquement la sécrétion du fibrinogène sont mises en évidence en gras. La nomenclature des mutations est établie en tenant compte du A de l’ATG codant pour la méthionine initiatrice comme premier nucléotide, ou de la méthionine initiatrice comme premier résidu. Les introns ne sont pas dessinés à l’échelle.

-> See the list of figures

Pathogénie de l’afibrinogénémie congénitale

L’afibrinogénémie congénitale (OMIM 202400) est une maladie rare à transmission autosomique récessive. Elle est due à l’absence de fibrinogène dans le plasma et est caractérisée par diverses manifestations hémorragiques ou parfois, de manière paradoxale, thrombotiques. Si la première description de la maladie remonte à 1920 [1], ce n’est que récemment, en 1999, que la première mutation responsable du déficit a été identifiée à Genève dans notre laboratoire : il s’agissait d’une délétion de 11 kb éliminant la quasi-totalité du gène FGA [2]. Depuis lors, plus de 40 mutations, toutes localisées dans l’un des trois gènes du locus codant pour le fibrinogène (Figure 1), ont été décrites. Elles se trouvent soit à l’état homozygote ou hétérozygote composite chez des patients afibrinogénémiques, soit sous forme hétérozygote chez des patients hypofibrinogénémiques (présentant une concentration réduite de fibrinogène plasmatique). Nous pouvons prédire que la majorité de ces derniers seraient très probablement afibrinogénémiques dans le cas où la mutation se trouverait sous forme homozygote, car la forme variante n’est pas détectée dans le plasma dans la plupart des cas. Ainsi, afibrinogénémie et hypofibrinogénémie ne se distingueraient l’une de l’autre au niveau moléculaire que par le niveau d’expression du fibrinogène résultant de l’état allélique du variant. La majorité des mutations sont de type nulle (non-sens, délétions, erreurs d’épissage, micro-insertions, micro-délétions). À ce jour, 14 mutations faux-sens ont été recensées, 8 dans FGG et 6 dans FGB. Parmi elles, sept substitutions ont été étudiées dans un modèle cellulaire in vitro : une mutation (C179R dans FGG) entrave l’assemblage des chaînes polypeptidiques, tandis que les six autres (L383R, G430D, G444S, W467G dans FGB ; W253C et G310R dans FGG) inhibent spécifiquement la sécrétion de l’hexamère correctement assemblé [3-8]. Par ailleurs, deux mutations non-sens (W467X et W470X) tronquant la chaîne Bβ de 25 et 22 acides aminés respectivement (sur un total de 491 résidus), ont été décrites comme bloquant également la sécrétion de la protéine [9, 10]. En résumé, 6 des 8 mutations entravant la sécrétion du fibrinogène sont localisées dans la chaîne Bβ, et plus particulièrement dans son domaine globulaire βC.

La sécrétion du fibrinogène est-elle soumise à un contrôle de qualité?

Notre récente étude [10] s’est portée sur le rôle joué par la chaîne Bβ et son domaine βC dans le processus de sécrétion du fibrinogène. Nous avons tout d’abord démontré, à l’aide d’un modèle cellulaire (fibroblastes Cos-7 co-transfectés) et en analysant des délétions sérielles de la région carboxy-terminale, que la présence des six derniers résidus de la chaîne Bβ n’est nécessaire ni pour l’assemblage ni pour la sécrétion de l’hexamère. En revanche, la suppression des sept derniers acides aminés - ou plus - (à partir de R485) empêche spécifiquement la sécrétion de la protéine. Pour étudier plus en profondeur l’importance du résidu R485, nous avons engendré des mutations dont l’analyse a montré que la nature de cet acide aminé n’est pas intrinsèquement cruciale pour la sécrétion. L’analyse structurelle de la protéine suggère que soit les six derniers acides aminés, qui forment une queue flexible, soit le résidu R485 seul entravent l’exposition du noyau non-polaire du domaine βC au solvant, empêchant ainsi une déstabilisation du domaine globulaire. Ces résultats, combinés à l’analyse structurelle des quatre mutations faux-sens affectant la sécrétion et toutes localisées dans ce domaine, suggèrent que la sécrétion du fibrinogène nécessite une conformation appropriée du domaine globulaire βC. Afin de définir l’implication de cette région dans le processus de sécrétion, nous avons construit des chaînes hybrides combinant la moitié amino-terminale de la chaîne Bβ, γ, ou de la protéine angiopoïétine-2 (contenant un FReD en carboxy-terminal), fusionnée à la partie carboxy-terminale de l’une ou l’autre des ces protéines (Figure 2A). L’expression, en co-transfection de ces chimères, a permis de relever trois observations principales : (1) aucun des polypeptides ou complexes contenant le domaine βC n’est sécrété, avec pour exception notable la molécule native du fibrinogène ; (2) les chaînes ou complexes avec la partie amino-terminale de Bβ sont sécrétés ; (3) les chaînes ou complexes contenant le domaine γC sont fortement sécrétés. De plus, le complexe ne différant de la molécule native du fibrinogène que par l’absence du domaine γC, n’est pas sécrété. Nous pouvons dès lors conclure que le domaine βC, et non pas la partie amino-terminale de Bβ, est limitant pour la sécrétion, car il n’est sécrété que lorsqu’il est incorporé dans un environnement protéique approprié fourni par les chaînes Aα et γ. À l’inverse, le domaine γC jouerait un rôle favorable, sinon nécessaire, pour la sécrétion du fibrinogène. Ces résultats mettent en lumière des rôles opposés dans la sécrétion de deux domaines pourtant structurellement homologues. Outre l’étude du rôle joué par ces domaines dans le processus sécrétoire du fibrinogène, nous nous sommes également intéressés à la localisation cellulaire des mutants de sécrétion. En utilisant les techniques d’immunofluorescence et d’immunomicroscopie électronique, nous avons pu observer que le fibrinogène normal se trouve, comme attendu, dans le réticulum endoplasmique et dans le Golgi. En revanche, trois mutants de sécrétion différents montrent une localisation dans le réticulum, mais sont exclus du Golgi, indiquant qu’ils sont retenus dans un compartiment pré-golgien (Figure 2B).

Figure 2

Le domaine βC est limitant pour la sécrétion du fibrinogène.

Le domaine βC est limitant pour la sécrétion du fibrinogène.

A. Sécrétion des chaînes, des complexes intermédiaires, de la molécule native du fibrinogène ainsi que des chaînes ou complexes hybrides. Seules les trois différentes chaînes constituant les complexes hexamériques sont schématisées. Le domaine βC n’est pas sécrété, à moins que la chaîne Bβ ne soit co-transfectée avec les chaînes Aα et γ du fibrinogène. - : non sécrété ; + : peu sécrété ; ++ : sécrété ; +++ : hautement sécrété ; nd : non déterminé. B. Immunofluorescence permettant la visualisation du fibrinogène normal dans le réticulum endoplasmique et le Golgi à l’intérieur de cellules Cos-7 co-transfectées. À l’opposé, un mutant (G444S sur la chaîne Bβ) inhibant la sécrétion du fibrinogène, n’est localisé que dans le réticulum endoplasmique et est absent du Golgi. La protéine « giantine » est utilisée comme marqueur de l’appareil de Golgi. Fg : fibrinogène ; nt : non transfecté. Barre d’échelle : 10 µm.

-> See the list of figures

Conclusions

Ces travaux mettent en évidence l’existence d’un contrôle de qualité dans un compartiment pré-golgien de la sécrétion du fibrinogène, avec un rôle limitant du domaine βC. En effet, celui-ci requiert une conformation structurelle et un environnement protéique adéquats, pour ne pas entraver le processus sécrétoire. La rétention de protéines mutées s’avère être un des mécanismes importants dans la pathogénie de l’afibrinogénémie congénitale. Les résultats de cette étude pourront être élargis à la compréhension des mécanismes de nombreuses maladies, telles que la mucoviscidose ou la déficience en α1-antitrypsine, causées notamment par des mutations aboutissant de manière similaire à des défauts de conformation protéique et à un trafic aberrant de la protéine (CFTR et α1-antitrypsine, respectivement) [11].