Résumés
Résumé
L’accumulation et la toxicité (aigüe) des métaux dissous chez plusieurs organismes aquatiques peuvent être prédites adéquatement à l’aide du modèle du ligand biotique (MLB), même si quelques exceptions existent. Lors d’expositions chroniques aux métaux, des interactions physiologiques complexes entre les organismes et les métaux essentiels et non essentiels modulent le taux de transport des métaux et leur toxicité. La présente revue de littérature aborde les récentes avancées en chimie de l’environnement, en biologie moléculaire et en physiologie cellulaire touchant aux mécanismes de régulation du transport membranaire des métaux essentiels chez le phytoplancton eucaryote et leurs impacts sur l’accumulation et la toxicité d’un métal habituellement non essentiel, le cadmium. Cette revue évalue finalement la possibilité d’inclure des éléments de physiologie algale dans la présente version du MLB afin d’améliorer le potentiel de ce modèle à prédire l’accumulation et la toxicité des métaux pour des expositions chroniques. Les résultats disponibles dans la littérature suggèrent que l’inclusion des rétroactions négatives et positives des métaux sur les paramètres cinétiques (Vmax : vitesse maximale de transport transmembranaire; KM : affinité des transporteurs pour le métal) des multiples systèmes de transport membranaire des métaux a le potentiel d’améliorer les prédictions de l’accumulation et de la toxicité des métaux à long terme chez le phytoplancton. Le développement d’un MLB capable de prédire adéquatement la toxicité chronique des métaux dans des conditions physicochimiques variables représentatives de celles retrouvées en milieu naturel bénéficiera des avancées récentes et futures en toxicologie, biologie et chimie de l’environnement. Ces connaissances pourraient permettre à long terme d’atteindre l’objectif ambitieux d’un MLB capable de réaliser des prédictions fiables à l’intérieur de milieux naturels complexes de différentes compositions chimiques.
Mots-clés :
- Modèle du ligand biotique,
- toxicité des métaux,
- phytoplancton,
- physiologie algale,
- transport membranaire des métaux
Abstract
The accumulation and (acute) toxicity of dissolved metals in many aquatic organisms are normally well predicted with the biotic ligand model (BLM), although some exceptions have been reported. In long-term chronic metal exposures, complex physiological interactions with essential and non-essential metals may modulate metal uptake rates and toxicity. The present literature review discusses recent advances in environmental chemistry, molecular biology, and physiology related to the regulatory mechanisms of membrane transport of essential metals in eukaryotic phytoplankton and to their impacts on the accumulation and toxicity of cadmium, a usually non-essential metal. This literature review finally evaluates the possibility of including elements of algal physiology in the current version of the BLM in order to enhance the potential of this model to predict metal uptake and toxicity in chronic exposures. The available results in the literature suggest that the inclusion of negative and positive feedback interactions of metals on the kinetic parameters (Vmax: maximal uptake rate; KM: metal affinity of the transport sites) of multiple metal transport systems shows promise for better predicting the long-term accumulation and toxicity of metals in phytoplankton. The development of a BLM able to predict the chronic toxicity of metals under various physicochemical conditions representative of those found in the environment will benefit from recent and future advances in toxicology, biology and environmental chemistry. The knowledge gained will aid in achieving the ambitious goal of developing an extended BLM that reliably predicts metal toxicity in complex natural aquatic environments.
Keywords:
- Biotic ligand model,
- metal toxicity,
- phytoplankton,
- algal physiology,
- metal transport systems
Parties annexes
Références bibliographiques
- ALLEN A.E., J. LAROCHE, U. MAHESWARI, M. LOMMER, N. SCHAUER, P.J. LOPEZ, G. FINAZZI, A.R. FERNI et C. BOWLER (2008). Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. (USA), 105, 10438-10443.
- ANDERSON M.A. et F.M.M. MOREL (1982). Influence of aqueous iron chemistry on uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr., 27, 789-813.
- ARGÜELLO J.M., E. EREN et M. GONZÁLEZ-GUERRERO (2007). The structure and function of heavy metal transport P1B-ATPases. BioMetals, 20, 233-248.
- BIRD D.F. et J. KALFF (1987). Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr., 32, 277-284.
- BLABY-HAAS C.E. et S.S. MERCHANT (2012). The ins and outs of algal metal transport. Biochim. Biophys. Acta - Mol. Cell Res., 1823, 1531-1552.
- BOILY F. (2004). Mécanismes de prise en charge et toxicité du cadmium en présence de thiosulfate chez une algue verte, Chlamydomonas reinhardtii. Thèse de MSc, Institut national de la recherche scientifique, Québec, QC, Canada,124 p.
- BOULLEMANT A., M. LAVOIE, C. FORTIN et P.G.C. CAMPBELL (2009). Uptake of hydrophobic metal complexes by three freshwater algae: Unexpected influence of pH. Environ. Sci. Technol., 43, 3308-3314.
- BREMBU T., M. JORSTAD, P. WINGE, K.C. VALLE et A.M. BONES (2011). Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. Environ. Sci. Technol., 45, 7640-7647.
- BUDAC D. et P. WAN (1992). Photodecarboxylation: mechanism and synthetic utility. J. Photoch. Photobiol. A, 67, 135-166.
- CAMPBELL P.G.C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. Dans : Metal Speciation and Bioavailability in Aquatic Systems. TESSIER A. et D.R. TURNER (Éditeurs), John Wiley & Sons, New York, NY, États-Unis, pp. 45-102.
- CAMPBELL P.G.C. et C. FORTIN (2013). Biotic Ligand Model. Dans : Encyclopedia of Aquatic Ecotoxicology. FÉRARD J-F B.C. (Éditeur), Springer, Dordrecht, Pays-Bas, p. 237.
- CAMPBELL P.G.C., O. ERRÉCALDE, C. FORTIN, V.P. HIRIART-BAER et B. VIGNEAULT (2002). Metal bioavailability to phytoplankton - Applicability of the biotic ligand model. Comp. Biochem. Physiol. C, 133, 189-206.
- CHEN Z., L. ZHU et K.J. WILKINSON (2010). Validation of the biotic ligand model in metal mixtures: Bioaccumulation of lead and copper. Environ. Sci. Technol., 44, 3580-3586.
- COHEN C.K., T.C. FOX, D.F. GARVIN et L.V. KOCHIAN (1998). The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol., 116, 1063-1072.
- CRÉMAZY A., S. LECLAIR, K.K. MUELLER, B. VIGNEAULT, P.G.C. CAMPBELL et C. FORTIN (2015). Development of an in situ ion-exchange technique for the determination of free Cd, Co, Ni, and Zn concentrations in freshwaters. Aquat. Geochem., 21, 259-279.
- CROTEAU M.N., L. HARE et A. TESSIER (1998). Refining and testing a trace metal biomonitor (Chaoborus) in highly acidic lakes. Environ. Sci. Technol., 32, 1348-1353.
- DALCORSO G., S. FARINATI, S. MAISTRI et A. FURINI (2008). How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant Biol., 50, 1268-1280.
- DE SCHAMPHELAERE K.A.C. et C.R. JANSSEN (2004). Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ. Toxicol. Chem., 23, 1365-1375.
- DE SCHAMPHELAERE K.A.C. et C.R. JANSSEN (2006). Bioavailability models for predicting copper toxicity to freshwater green microalgae as a function of water chemistry. Environ. Sci. Technol., 40, 4514-4522.
- DE SCHAMPHELAERE K.A.C., J.L. STAUBER, K.L. WILDE, S.J. MARKICH, P.L. BROWN, N.M. FRANKLIN, N.M. CREIGHTON et C.R. JANSSEN (2005). Toward a biotic ligand model for freshwater green algae: Surface-bound and internal copper are better predictors of toxicity than free Cu2+ ion activity when pH is varied. Environ. Sci. Technol., 39, 2067-2072.
- DECKERT J. (2005). Cadmium toxicity in plants: Is there any analogy to its carcinogenic effect in mammalian cells? BioMetals, 18, 475-481.
- DELEEBEECK N.M.E., F. DE LAENDER, V.A. CHEPURNOV, W. VYVERMAN, C.R. JANSSEN et K.A.C. DE SCHAMPHELAERE (2009a). A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water Res., 43, 1935-1947.
- DELEEBEECK N.M.E., K.A.C. DE SCHAMPHELAERE et C.R. JANSSEN (2009b). Effects of Mg2+ and H+ on the toxicity of Ni2+ to the unicellular green alga Pseudokirchneriella subcapitata: Model development and validation with surface waters. Sci. Total Environ., 407, 1901-1914.
- DI TORO D.M., H.E. ALLEN, H.L. BERGMAN, J.S. MEYER, P.R. PAQUIN et R.C. SANTORE (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem., 20, 2383-2396.
- DUVAL J.F.L., N. PAQUET, M. LAVOIE et C. FORTIN (2015). Dynamics of metal partitioning at the cell−solution interface: Implications for toxicity assessment under growth-inhibiting conditions. Environ. Sci. Technol., 49, 6625-6636.
- ERRÉCALDE O., M. SEIDL et P.G.C. CAMPBELL (1998). Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: An exception to the free-ion model. Water Res., 32, 419-429.
- ERRÉCALDE O. et P.G.C. CAMPBELL (2000). Cadmium and zinc bioavailability to Selenastrum capricornutum (Chlorophyceae): Accidental metal uptake and toxicity in the presence of citrate. J. Phycol., 36, 473-483.
- EUROPEAN COMMISSION (2011). Technical guidance for deriving environmental quality standards. Guidance Document No 27, Common Implementation Strategy for the Water Framework Directive, European Commission, Bruxelles, Belgique, 204 p.
- FINKEL Z.V., A. QUIGG, J.A. RAVEN, J.R. REINFELDER, O.E. SCHOFIELD et P.G. FALKOWSKI (2006). Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol. Oceanogr., 51, 2690-2701.
- FLORENCE T.M., H.K.J. POWELL, J.L. STAUBER et R.M. TOWN (1992). Toxicity of lipid-soluble copper(II) complexes to the marine diatom Nitzschia closterium: Amelioration by humic substances. Water Res., 26, 1187-1193.
- FORTIN C. et P.G.C. CAMPBELL (2000). Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: Influence of chloride. Environ. Toxicol. Chem., 19, 2769-2778.
- FORTIN C. et P.G.C. CAMPBELL (2001). Thiosulfate enhances silver uptake by a green alga: Role of anion transporters in metal uptake. Environ. Sci. Technol., 35, 2214-2218.
- FORTIN C., F.H. DENISON et J. GARNIER-LAPLACE (2007). Metal-phytoplankton interactions: Modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake. Environ. Toxicol. Chem., 26, 242-248.
- FORTIN C., Y. COUILLARD, B. VIGNEAULT et P.G.C. CAMPBELL (2010). Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange. Aquat. Geochem., 16, 151-172.
- FOSTER P.L. et F.M.M. MOREL (1982). Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron. Limnol. Oceanogr., 27, 745-752.
- FRANÇOIS L., C. FORTIN et P.G.C. CAMPBELL (2007). pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: Implications for an algal BLM. Aquat. Toxicol., 84, 123-132.
- GERLOFF-ELIAS A., D. BARUA, A. MÖLICH et E. SPIJKERMAN (2006). Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol. Ecol., 56, 345-354.
- HALL J.L. et L.E. WILLIAMS (2003). Transition metal transporters in plants. J. Exp. Bot., 54, 2601-2613.
- HALL M.J. et M.T. BROWN (2002). Copper and manganese influence the uptake of cadmium in marine macroalgae. Bull. Environ. Contam. Toxicol., 68, 49-55.
- HANIKENNE M., U. KRÄMER, V. DEMOULIN et D. BAURAIN (2005). A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol., 137, 428-446.
- HARRISON G.I. et F.M.M. MOREL (1983). Antagonism between cadmium and iron in the marine diatom Thalassiosira weissflogii. J. Phycol., 19, 495-507.
- HARRISON G.I. et F.M.M. MOREL (1986). Response of the marine diatom Thalassiosira weissflogii to iron stress. Limnol. Oceanogr., 31, 989-997.
- HART B.A., P.E. BERTRAM et B.D. SCAIFE (1979). Cadmium transport by Chlorella pyrenoidosa. Environ. Res., 18, 327-335.
- HASSLER C.S. et K.J. WILKINSON (2003). Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ. Toxicol. Chem., 22, 620-626.
- HASSLER C.S., V.I. SLAVEYKOVA et K.J. WILKINSON (2004). Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ. Toxicol. Chem., 23, 283-291.
- HEIJERICK D., K. DE SCHAMPHELAERE et C.R. JANSSEN (2002a). Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: Possibilities and limitations. Comp. Biochem. Physiol. C, 133, 207.
- HEIJERICK D.G., K.A.C. DE SCHAMPHELAERE et C.R. JANSSEN (2002b). Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: Development and validation of a biotic ligand model. Environ. Toxicol. Chem., 21, 1309-1315.
- HERBIK A., C. BOLLING et T.J. BUCKHOUT (2002). The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii. Plant Physiol., 130, 2039-2048.
- HERING J.G. (2009). Metal speciation and bioavailability: Revisiting the "big questions". Environ. Chem., 6, 290-293.
- HILL K.L., R. HASSETT, D. KOSMAN et S. MERCHANT (1996). Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol., 112, 697-704.
- HIRIART-BAER V.P., C. FORTIN, D.Y. LEE et P.G.C. CAMPBELL (2006). Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: Influence of thiosulphate. Aquat. Toxicol., 78, 136-148.
- HO T.Y., A. QUIGG, Z.V. FINKEL, A.J. MILLIGAN, K. WYMAN, P.G. FALKOWSKI et F.M.M. MOREL (2003). The elemental composition of some marine phytoplankton. J. Phycol., 39, 1145-1159.
- HOGSTRAND C. et C.M. WOOD (1995). Mechanisms for zinc acclimation in freshwater rainbow trout. Mar. Environ. Res., 39, 131-135.
- HOLLIS L., J.C. MCGEER, D.G. MCDONALD et C.M. WOOD (1999). Cadmium accumulation, gill Cd binding, acclimation, and physiological effects during long term sublethal Cd exposure in rainbow trout. Aquat. Toxicol., 46, 101-119.
- HOPKINSON B.M. et F.M.M. MOREL (2009). The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals, 22, 659-669.
- HU S., K.W.K. LAU et M. WU (2001). Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci., 161, 987-996.
- HUDSON R.J.M. (1998). Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Sci. Total Environ., 219, 95-115.
- HUDSON R.J.M. et F.M.M. MOREL (1990). Iron transport in marine phytoplankton - Kinetics of cellular and medium coordination reactions. Limnol. Oceanogr., 35, 1002-1020.
- HUDSON R.J.M. et F.M.M. MOREL (1993). Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-Sea Res., 40, 129-150.
- HUTCHINS C.M., D.F. SIMON, W. ZERGES et K.J. WILKINSON (2010). Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures. Aquat. Toxicol., 100, 120-127.
- JAIN C.K. et M.K. SHARMA (2001). Distribution of trace metals in the Hindon River system, India. J. Hydrol., 253, 81-90.
- JAMERS A., R. BLUST et W. DE COEN (2009). Omics in algae: Paving the way for a systems biological understanding of algal stress phenomena? Aquat. Toxicol., 92, 114-121.
- KALIS E.J.J., L. WENG, F. DOUSMA, E.J.M. TEMMINGHOFF et W.H. VAN RIEMSDIJK (2006). Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique. Environ. Sci. Technol., 40, 955-961.
- KIM B.E., T. NEVITT et D.J. THIELE (2008). Mechanisms for copper acquisition, distribution and regulation. Nature Chem. Biol., 4, 176-185.
- KNAUER K., T. JABUSCH et L. SIGG (1999). Manganese uptake and Mn(II) oxidation by the alga Scenedesmus subspicatus. Aquat. Sci., 61, 44-58.
- KOMINE Y., H. PARK, G.R. WOLFE et J.K. HOOBER (1996). Secretory granules in the cytoplasm of a wall-less mutant of Chlamydomonas reinhardtii contain processed light-harvesting complex apoproteins and HSP70. J. Photoch. Photobiol. B, 36, 301-306.
- KOMINE Y., L.L. EGGINK, H. PARK et J.K. HOOBER (2000). Vacuolar granules in Chlamydomonas reinhardtii: Polyphosphate and a 70-kDa polypeptide as major components. Planta, 210, 897-905.
- KRAEMER L.D., P.G.C. CAMPBELL, L. HARE et J.-C. AUCLAIR (2006). A field study examining the relative importance of food and water as sources of cadmium for juvenile yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci., 63, 549-557.
- KRÄMER U., I.N. TALKE et M. HANIKENNE (2007). Transition metal transport. FEBS Lett., 581, 2263-2272.
- KUSTKA A.B., A.E. ALLEN et F.M.M. MOREL (2007). Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J. Phycol., 43, 715-729.
- LA FONTAINE S., J.M. QUINN, S.S. NAKAMOTO, M. DUDLEY PAGE, V. GÖHRE, J.L. MOSELEY, J. KROPAT et S. MERCHANT (2002). Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryotic Cell, 1, 736-757.
- LANE E.S., K. JANG, J.T. CULLEN et M.T. MALDONADO (2008). The interaction between inorganic iron and cadmium uptake in the marine diatom Thalassiosira oceanica. Limnol. Oceanogr., 53, 1784-1789.
- LANE E.S., D.M. SEMENIUK, R.F. STRZEPEK, J.T. CULLEN et M.T. MALDONADO (2009). Effects of iron limitation on intracellular cadmium of cultured phytoplankton: Implications for surface dissolved cadmium to phosphate ratios. Mar. Chem., 115, 155-162.
- LAVOIE M., S. LE FAUCHEUR, C. FORTIN et P.G.C. CAMPBELL (2009). Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Aquat. Toxicol., 92, 65-75.
- LAVOIE M., P.G.C. CAMPBELL et C. FORTIN (2012a). Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga. Environ. Sci. Technol., 46, 12129-12136.
- LAVOIE M., C. FORTIN et P.G.C. CAMPBELL (2012b). Influence of essential elements on cadmium uptake and toxicity in a unicellular green alga: The protective effect of trace zinc and cobalt concentrations. Environ. Toxicol. Chem., 31, 1445-1452.
- LAVOIE M., S. LE FAUCHEUR, A. BOULLEMANT, C. FORTIN et P.G.C. CAMPBELL (2012c). The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes. J. Phycol., 48, 293-302.
- LAVOIE M., P.G.C. CAMPBELL et C. FORTIN (2014). Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a Biotic Ligand Model. Environ. Sci. Technol., 48, 1222-1229.
- LE FAUCHEUR S., R. BEHRA et L. SIGG (2005). Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ. Toxicol. Chem., 24, 1731-1737.
- LEAL M.F.C. et C.M.G. VAN DEN BERG (1998). Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat. Geochem., 4, 49-75.
- LEE D.Y., C. FORTIN et P.G.C. CAMPBELL (2004). Influence of chloride on silver uptake by two green algae, Pseudokirchneriella subcapitata and Chlorella pyrenoidosa. Environ. Toxicol. Chem., 23, 1012-1018.
- LEE J.G., B.A. AHNER et F.M.M. MOREL (1996). Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ. Sci. Technol., 30, 1814-1821.
- LEE Y. et B.M. TEBO (1994). Cobalt(II) oxidation by the marine manganese(II)-oxidizing Bacillus sp. strain SG-1. Appl. Environ. Microb., 60, 2949-2957.
- LEGUAY S., I. LAVOIE, J. LEVY et C. FORTIN (2016) Using biofilms for monitoring metal contamination in lotic ecosystems: the protective effects of hardness and pH on metal bioaccumulation. Environ. Toxicol. Chem. (sous presse). DOI: 10.1002/etc.3292
- LUOMA S.N. et P.S. RAINBOW (2008). Metal contamination in aquatic environments: Science and lateral management. Cambridge University Press, New York, NY, États-Unis, 588 p.
- MALONEY F. (2007). Influence de paramètres physico-chimiques (dureté, pH et présence d'un agent chelateur, l'EDTA) sur la réponse toxique au cadmium de l'algue verte d'eau douce, Pseudokirchneriella subcapitata. Thèse de MSc, Institut national de la recherche scientifique, Québec, QC, Canada,118 p.
- MASON R.P., J.R. REINFELDER et F.M.M. MOREL (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol., 30, 1835-1845.
- MERCHANT S.S., M.D. ALLEN, J. KROPAT, J.L. MOSELEY, J.C. LONG, S. TOTTEY et A.M. TERAUCHI (2006). Between a rock and a hard place: Trace element nutrition in Chlamydomonas. BBA - Mol. Cell Res., 1763, 578-594.
- MEYER J.S., K.J. FARLEY et E.R. GARMAN (2015). Metal mixture modeling evaluation project: 1. Background. Environ. Toxicol. Chem., 34, 726-740.
- MIAO A.J., W.X. WANG et P. JUNEAU (2005). Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environ. Toxicol. Chem., 24, 2603-2611.
- MIGEON A., D. BLAUDEZ, O. WILKINS, B. MONTANINI, M.M. CAMPBELL, P. RICHAUD, S. THOMINE et M. CHALOT (2010). Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell. Mol. Life Sci., 67, 3763-3784.
- MOFFETT J.W. et J. HO (1996). Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochim. Cosmochim. Acta, 60, 3415-3424.
- MOREL F.M.M. (1983). Principles of Aquatic Chemistry. John Wiley & Sons, Somerset, NJ, États-Unis, 446 p.
- MOREL F.M.M. (2008). The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology, 6, 318-324.
- MORIN S., VIVAS-NOGUES M., T.T. DUONG, A. BOUDOU, M. COSTE et F. DELMAS (2007). Dynamics of benthic diaton colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fund. Appl. Limnol., 168, 179-187.
- MUELLER K.K., S. LOFTS, C. FORTIN et P.G.C. CAMPBELL (2012). Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality. Environ. Chem., 9, 356-368.
- MURRAY K.J., S.M. WEBB, J.R. BARGAR et B.M. TEBO (2007). Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. Appl. Environ. Microb., 73, 6905-6909.
- NAITO K., M. SUZUKI, S. MITO, H. HASEGAWA, I. IMAI, Y. SOHRIN et M. MATSUI (2001). The pursuit of siderophore secreted by marine phytoplankton Rhodomonas ovalis. Anal. Sci., 17, 1817-1819.
- NAITO K., M. SUZUKI, M. MATSUI et I. IMAI (2004). Secretion of iron-complexing ligands from Closterium aciculare (Charophyceae, Chlorophyta) under iron-deficient conditions. Phycologia, 43, 632-634.
- NASSIRI Y., J. WÉRY, J.L. MANSOT et T. GINSBURGER-VOGEL (1997). Cadmium bioaccumulation in Tetraselmis suecica: An electron energy loss spectroscopy (EELS) study. Arch. Environ, Contam. Toxicol., 33, 156-161.
- NEVO Y. et N. NELSON (2006). The NRAMP family of metal-ion transporters. BBA - Mol. Cell Res., 1763, 609-620.
- PAGE M.D., J. KROPAT, P.P. HAMEL et S.S. MERCHANT (2009). Two Chlamydomonas CTR copper transporters with a novel Cys-Met motif are localized to the plasma membrane and function in copper assimilation. The Plant Cell, 21, 928-943.
- PALENIK B., J. GRIMWOOD, A. AERTS, P. ROUZE, A. SALAMOV, N. PUTNAM, C. DUPONT, R. JORGENSEN, E. DERELLE, S. ROMBAUTS, K.M. ZHOU, R. OTILLAR, S.S. MERCHANT, S. PODELL, T. GAASTERLAND, C. NAPOLI, K. GENDLER, A. MANUELL, V. TAI, O. VALLON, G. PIGANEAU, S. JANCEK, M. HEIJDE, K. JABBARI, C. BOWLER, M. LOHR, S. ROBBENS, G. WERNER, I. DUBCHAK, G.J. PAZOUR, Q.H. REN, I. PAULSEN, C. DELWICHE, J. SCHMUTZ, D. ROKHSAR, Y. VAN DE PEER, H. MOREAU et I.V. GRIGORIEV (2007). The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. (USA), 104, 7705-7710.
- PALMGREN M.G. (2001). Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Ann. Rev. Plant Physiol., 52, 817-845.
- PANKOW J.F. et J.J. MORGAN (1981). Kinetics for the aquatic environment. Part II. Environ. Sci. Technol., 15, 1306-1313.
- PAQUET N., M. LAVOIE, F. MALONEY, J. DUVAL, P.G.C. CAMPBELL et C. FORTIN (2015). Cadmium accumulation and toxicity in the unicellular alga Pseudokirchneriella subcapitata: Influence of metal-binding exudates and exposure time. Environ. Toxicol. Chem., 34, 1524-1532.
- PAQUIN P.R., D.M. DI TORO, R.C. SANTORE, D. TRIVEDI et K.B. WU (1999). A biotic ligand model of the acute toxicity of metals. III. Application to fish and Daphnia exposure to silver. Dans : Integrated approach to assessing the bioavailiability and toxicity of metals in surface waters and sediments. EPA Science Advisory Board, Office of Research and Development, Washington, DC, États-Unis, pp. 3-102.
- PAQUIN P.R., J.W. GORSUCH, S. APTE, G.E. BATLEY, K.C. BOWLES, P.G.C. CAMPBELL, C.G. DELOS, D.M. DI TORO, R.L. DWYER, F. GALVEZ, R.W. GENSEMER, G.G. GOSS, C. HOGSTRAND, C.R. JANSSEN, J.C. MCGEER, R.B. NADDY, R.C. PLAYLE, R.C. SANTORE, U. SCHNEIDER, W.A. STUBBLEFIELD, C.M. WOOD et K.B. WU (2002a). The biotic ligand model: A historical overview. Comp. Biochem. Physiol. C, 133, 3-35.
- PAQUIN P.R., V. ZOTAY, R.P. WINFIELD, K.B. WU, R. MATHEW, R.C. SANTORE et D.M. DI TORO (2002b). Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Comp. Biochem. Physiol. C, 133, 305-343.
- PHINNEY J.T. et K.W. BRULAND (1994). Uptake of lipophllic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira weissflogii. Environ. Sci. Technol., 28, 1781-1790.
- PINHEIRO J.P. et H.P. VAN LEEUWEN (2001). Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range. Environ. Sci. Technol., 35, 894-900.
- PINTO E., T.C.S. SIGAUD-KUTNER, M.A.S. LEITAO, O.K. OKAMOTO, D. MORSE et P. COLEPICOLO (2003). Heavy metal-induced oxidative stress in algae. J. Phycol., 39, 1008-1018.
- QIAN J., H.B. XUE, L. SIGG et A. ALBRECHT (1998). Complexation of cobalt by natural ligands in freshwater. Environ. Sci. Technol., 32, 2043-2050.
- REA P.A., O.K. VATAMANIUK et D.J. RIGDEN (2004). Weeds, worms, and more. Papain's long-lost cousin, phytochelatin synthase. Plant Physiol., 136, 2463-2474.
- REID R.J. (2001). Mechanisms of micronutrient uptake in plants. Aust. J. Plant Physiol., 28, 659-666.
- RICHARDSON L.L., C. AGUILAR et K.H. NEALSON (1988). Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnol. Oceanogr., 33, 352-363.
- RICHARDSON L.L. et K.D. STOLZENBACH (1995). Phytoplankton cell-size and the development of microenvironments. FEMS Microbiol. Ecol., 16, 185-191.
- ROSAKIS A. et W. KÖSTER (2004). Transition metal transport in the green microalga Chlamydomonas reinhardtii - Genomic sequence analysis. Res. Microbiol., 155, 201-210.
- ROSAKIS A. et W. KÖSTER (2005). Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues. BioMetals, 18, 107-120.
- ROSKO J.J. et J.W. RACHLIN (1977). The effect of cadmium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll-a content of the chlorophyte Chlorella vulgaris. Bull. Torrey Bot. Club, 104, 226-233.
- RUIZ F.A., N. MARCHESINI, M. SEUFFERHELD, GOVINDJEE et R. DOCAMPO (2001). The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J. Biol. Chem., 276, 46196-46203.
- SAITO M.A., D.M. SIGMAN et F.M.M. MOREL (2003). The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorg. Chim. Acta, 356, 308-318.
- SHARMA V.K. et F.J. MILLERO (1988). Oxidation of copper(I) in sea water. Environ. Sci. Technol., 22, 768-771.
- SHELDON J.R. et D.E. HEINRICHS (2015). Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol. Rev., 39, 592-630.
- SIGG L., P. BEHRA et W. STUMM (2006a). Chimie des milieux aquatiques : chimie des eaux naturelles et des interfaces dans l'environnement. Dunod, Paris, France, 564 p.
- SIGG L., F. BLACK, J. BUFFLE, J. CAO, R. CLEVEN, W. DAVISON, J. GALCERAN, P. GUNKEL, E. KALIS, D. KISTLER, M. MARTIN, S. NOËL, Y. NUR, N. ODZAK, J. PUY, W. VAN RIEMSDIJK, E. TEMMINGHOFF, M.L. TERCIER-WAEBER, S. TOEPPERWIEN, R.M. TOWN, E. UNSWORTH, K.W. WARNKEN, L. WENG, H. XUE et H. ZHANG (2006b). Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol., 40, 1934-1941.
- SIMON D.F., T.A. DAVIS, M.L. TERCIER-WAEBER, R. ENGLAND et K.J. WILKINSON (2011). In situ evaluation of cadmium biomarkers in green algae. Environ. Pollut., 159, 2630-2636.
- SKOWRONSKI T., B. PAWLIK et M. JAKUBOWSKI (1988). Reduction of cadmium toxicity to green microalga Stichococcus bacillaris by manganese. Bull. Environ. Contam. Toxicol., 41, 915-920.
- SLAVEYKOVA V.I. et K.J. WILKINSON (2002). Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. Environ. Sci. Technol., 36, 969-975.
- SLAVEYKOVA V.I. et K.J. WILKINSON (2005). Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model. Environ. Chem., 2, 9-24.
- STAUBER J.L. et T.M. FLORENCE (1987). Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol., 94, 511-519.
- STUMM W. et J.J. MORGAN (1996). Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters. Third edition. John Wiley & Sons, États-Unis, 1022 p.
- SUN J., C. TANG, P. WU, C. LIU et R. ZHANG (2013). Migration of Cu, Zn, Cd and As in epikarst water affected by acid mine drainage at a coalfield basin, Xingren, Southwest China. Environ. Earth Sci., 69, 2623-2632.
- SUNDA W. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol., 3, 204.
- SUNDA W.G. et R.R.L. GUILLARD (1976). The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res., 34, 511-529.
- SUNDA W.G. et S.A. HUNTSMAN (1986). Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira. J. Phycol., 22, 259-270.
- SUNDA W.G. et S.A. HUNTSMAN (1988). Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res., 35, 1297-1317.
- SUNDA W.G. et S.A. HUNTSMAN (1992). Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr., 37, 25-40.
- SUNDA W.G. et S.A. HUNTSMAN (1995a). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem., 50, 189-206.
- SUNDA W.G. et S.A. HUNTSMAN (1995b). Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol. Oceanogr., 40, 132-137.
- SUNDA W.G. et S.A. HUNTSMAN (1996). Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol. Oceanogr., 41, 373-387.
- SUNDA W.G. et S.A. HUNTSMAN (1998a). Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ. Sci. Technol., 32, 2961-2968.
- SUNDA W.G. et S.A. HUNTSMAN (1998b). Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol. Oceanogr., 43, 1055-1064.
- SUNDA W.G. et S.A. HUNTSMAN (1998c). Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. Sci. Total Environ., 219, 165-181.
- SUNDA W.G. et S.A. HUNTSMAN (2000). Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: Implications for oceanic Cd cycling. Limnol. Oceanogr., 45, 1501-1516.
- SZIVAK I., R. BEHRA et L. SIGG (2009). Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). J. Phycol., 45, 427-435.
- TEBO B.M. (1998). Mn(II) oxidation in marine environments is likely bacterial. Comment on "Comment on 'Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway' by J.W. Moffett and J. Ho". Geochim. Cosmochim. Acta, 62, 357-358.
- TEMPLETON D.M., F. ARIESE, R. CORNELIS, L.G. DANIELSSON, H. MUNTAU, H.P. VAN LEEUWEN et R. LOBINSKI (2000). Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000). Pure Appl. Chem., 72, 1453-1470.
- TERCIER-WAEBER M.-L., F. CONFALONIERI, G. RICCARDI, A. SINA, S. NOËLA, J. BUFFLE et F. GRAZIOTTIN (2005). Multi physical–chemical profiler for real-time in situ monitoring of trace metal speciation and master variables: Development, validation and field applications. Mar. Chem., 97, 216-235.
- TERCIER WAEBER M.-L., S. STOLL et V. SLAVEYKOVA (2012). Trace metal behavior in surface waters: Emphasis on dynamic speciation, sorption processes and bioavailability. Arch. Sci., 65, 119-142.
- THOMINE S., R. WANG, J.M. WARD, N.M. CRAWFORD et J.I. SCHROEDER (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. (USA), 97, 4991-4996.
- TIPPING E. (1998). Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem., 4, 3-48.
- TIPPING E. et S. LOFTS (2015). Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ. Toxicol. Chem., 34, 788-798.
- TÖPPERWIEN S., R. BEHRA et L. SIGG (2007a). Competition among zinc, manganese, and cadmium uptake in the freshwater alga Scenedesmus vacuolatus. Environ. Toxicol. Chem., 26, 483-490.
- TÖPPERWIEN S., H. XUE, R. BEHRA et L. SIGG (2007b). Cadmium accumulation in Scenedesmus vacuolatus under freshwater conditions. Environ. Sci. Technol., 41, 5383-5388.
- TORRICELLI E., G. GORBI, B. PAWLIK-SKOWRONSKA, L.S. DI TOPPI et M.G. CORRADI (2004). Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquat. Toxicol., 68, 315-323.
- TRICK C.G., R.J. ANDERSEN, A. GILLAM et P.J. HARRISON (1983a). Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum. Science, 219, 306-308.
- TRICK C.G., R.J. ANDERSEN, N.M. PRICE, A. GILLAM et P.J. HARRISON (1983b). Examination of hydroxamate-siderophore production by neritic eukaryotic marine phytoplankton. Mar. Biol., 75, 9-17.
- TUKAJ Z., A. BASCIK-REMISIEWICZ, T. SKOWRONSKI et C. TUKAJ (2007). Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: A study at low and elevated CO2 concentration. Environ. Exper. Bot., 60, 291-299.
- TWISS M.R., S.P. GOUVÊA, R.A. BOURBONNIERE, R.M.L. MCKAY et S.W. WILHELM (2005). Field investigations of trace metal effects on lake Erie phytoplankton productivity. J. Great Lakes Res., 31, 168-179.
- UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (US EPA) (2007). Aquatic life ambiant freshwater quality criteria - Copper. Office of Water, Office of Science and Technology, Washington, DC, États-Unis, 204 p.
- VON LANGEN P.J., K.S. JOHNSON, K.H. COALE et V.A. ELROD (1997). Oxidation kinetics of manganese(II) in sea water at nanomolar concentrations. Geochim. Cosmochim. Acta, 61, 4945-4954.
- VOUTSINAS G., F.E. ZARANI et A. KAPPAS (1997). The effect of environmental aneuploidy-inducing agents on the microtubule architecture of mitotic meristematic root cells in Hordeum vulgare. Cell Biol. Int., 21, 411-418.
- WEGER H.G. et G.S. ESPIE (2000). Ferric reduction by iron-limited Chlamydomonas cells interacts with both photosynthesis and respiration. Planta, 210, 775-781.
- WHITFIELD M. et D.R. TURNER (1979). Critical assessment of the relationship between biological thermodynamic and electrochemical availability. Dans : Chemical Modeling in Aqueous Systems. Everett J.A (Éditeur), American Chemical Society Symposium Series, Vol. 93, Chap. 29, pp. 657-680.
- WILKINSON K.J. et J. BUFFLE (2004). Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems. Dans : Physicochemical Kinetics and Transport at Biointerfaces. LEEUWEN H.P.V. et W. KÖSTER (Éditeurs), IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Vol. 9, John Wiley & Sons, Chichester, Royaume-Uni, Chap. 10.
- WILLIAMS R.J.P. (2002). The fundamental nature of life as a chemical system: The part played by inorganic elements. J. Inorg. Biochem., 88, 241-250.
- WORMS I.A.M. et K.J. WILKINSON (2007). Ni uptake by a green alga. 2. Validation of equilibrium models for competition effects. Environ. Sci. Technol., 41, 4264-4270.
- XUE H. et L. SIGG (1993). Free cupric ion concentration and Cu(II) speciation in a eutrophic lake. Limnol. Oceanogr., 38, 1200-1213.
- XUE H. et L. SIGG (1994). Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry. Anal. Chim. Acta, 284, 505-515.
- XUE H. et L. SIGG (1998). Cadmium speciation and complexation by natural organic ligands in fresh water. Anal. Chim. Acta, 363, 249-259.
- XUE H., D. KISTLER et L. SIGG (1995). Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol. Oceanogr., 40, 1142-1152.
- XUE H., A. OESTREICH, D. KISTLER et L. SIGG (1996). Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers. Aquat. Sci., 58, 69-87.
- XUE H. et W.G. SUNDA (1997). Comparison of [Cu2+] measurements in lake water determined by ligand exchange and cathodic stripping voltammetry and by ion-selective electrode. Environ. Sci. Technol., 31, 1902-1909.
- XUE X., C.M. COLLINS et H.G. WEGER (1998). The energetics of extracellular Fe(III) reduction by iron-limited Chlamydomonas reinhardtii (Chlorophyta). J. Phycol., 34, 939-944.
- YRUELA I. (2013). Transition metals in plant photosynthesis. Metallomics, 5, 1090-1109.
- ZHAO C.-M., P.G.C. CAMPBELL et K.J. WILKINSON (2016). When are metal complexes bioavailable? Environ. Chem., 13 (sous presse). DOI: 10.1071/EN15205