Résumés
Abstract
Comparisons of runoff and sediment loss from row-crop with and without riparian buffers, pasture and grass filter strips are limited. Effects of precipitation, landuse and buffer condition on runoff and sediment loss were examined from 1997 to 1999 in eight watersheds with varying proportions of row-crop, pasture, riparian buffers and grass filter strips. Runoff volume and sediment mass from row-crop watersheds were inversely related to the percentage of forest and pasture cover. Forest (n = 2), pasture (n = 3), row-crop (n = 2) and a row-crop watershed with grass filter strips (RC-GFS) had 3‑yr mean runoff of 939, 1,560, 3,434 and 1,175 m3 ha‑1 yr‑1, respectively. Runoff was greater from all landuses in a year when precipitation was 36% above normal (1998). The largest single runoff event from each watershed accounted for 11 to 25% of its total runoff. Forest, pasture, row-crop and RC-GFS watersheds lost 1,017, 1,241, 3,679 and 2,129 kg ha‑1 yr‑1 of sediment, respectively. In 1998, the RC-GFS watershed lost more sediment than row-crop watersheds and had less runoff and sediment loss in years with normal or below normal precipitation. Row-crop watersheds with 55% pasture reduced runoff and sediment loss by 55 and 66%, respectively, compared to row-crop watersheds. During 90% of the runoff events, more soil was lost from row-crop watersheds than pasture or forest watersheds. Results suggest that 3‑4 m grass filter strips, maintenance of 55% or more pasture/CRP land within row-crop watersheds and intact riparian buffers significantly reduce runoff and sediment losses from row-crop watersheds.
Key words:
- Runoff,
- Sediment,
- Row-crop,
- Forest,
- Grass filter strips,
- CRP/pasture
Résumé
Les études comparant les volumes de ruissellement et les charges sédimentaires de bassins versants avec cultures en lignes et pâturages avec et sans zones tampons et bandes riveraines sont peu nombreuses. Les effets des précipitations, de l’occupation du sol et des conditions des zones tampons sur le ruissellement et les charges sédimentaires ont été analysés de 1997 à 1999 pour huit bassins versants comportant en proportions diverses des cultures en lignes, des pâturages, des zones tampons et des bandes riveraines. Il a été montré que les volumes de ruissellement et les charges sédimentaires pour les bassins versants avec cultures en lignes étaient inversement proportionnels aux pourcentages de forêt et de pâturages présents sur ces bassins. Les moyennes mesurées sur trois ans des volumes de ruissellement des bassins versants de type forestier, avec pâturages, avec cultures en lignes et avec cultures en lignes et bandes riveraines (RC‑GFS) sont de 939, 1 560, 3 434 et 1 175 m3/ha/an respectivement. Les volumes de ruissellement mesurés pendant une année pour toutes les occupations du territoire ont été plus grands lorsque les précipitations ont été supérieures de 36 % à la normale (1998). L’événement générant le volume de ruissellement le plus important à survenir sur chaque bassin versant génère à lui seul de 11 % à 25 % du volume de ruissellement total mesuré. Les charges sédimentaires pour les bassins versants forestiers, avec pâturages, avec cultures en lignes et RC‑GFS ont été respectivement de 1 017, 1 241, 3 679, et 2 129 kg/ha/an respectivement. En 1998, les charges sédimentaires des bassins versants RC‑GFS ont été plus importantes que les bassins avec cultures en lignes alors que les volumes de ruissellement et les charges sédimentaires sur ces mêmes bassins ont été plus petits lors d’années avec des précipitations égales ou inférieures à la moyenne. Les bassins avec cultures en lignes et comportant 55 % de pâturages permettent une réduction de l’ordre de 55 % des volumes de ruissellement et de 66 % des charges sédimentaires lorsque comparés aux bassins avec cultures en lignes. Les charges sédimentaires mesurées à l’exutoire des bassins avec cultures en lignes ont été plus élevées pour 90 % des événements que celles issues des bassins avec pâturages ou forestiers. Les résultats de cette étude montrent que des bandes riveraines de 3 à 4 m, le maintien de plus de 55 % du territoire sous forme de pâturages/CRP pour des bassins avec cultures en lignes et la présence de bandes riveraines permettent de réduire de façon significative les volumes de ruissellement et les charges sédimentaires des bassins versants avec cultures en lignes.
Mots clés:
- Ruissellement,
- sédiment,
- cultures en lignes,
- forêt,
- bandes riveraines,
- CRP/pâturages
Parties annexes
References
- Carpenter S.R., Caraco N.E., Correll D.L., Howaarth R.W., Sharpley A.N., Smith V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8, 559-568.
- Cassell E.A., Dorioz J.M., Kort R.L., Hoffman J.P., Meals D.W., Kirschtel D., Braun D.C., 1998. Modelling phosphorus dynamics in ecosystems: mass balance and dynamic simulation approaches. J. Environ. Qual., 27, 293-298.
- Chung S.W., Grassman P.W., Kramer L.A., Williams J.R., Gu R., 1999. Validation of EPIC for two watersheds in southwest Iowa. J. Environ. Qual., 28, 971-979.
- Cooper J.R., Gilliam J.W., 1987. Phosphorus redistribution from cultivated fields into riparian areas. Soil Sci. Soc. Am. J., 51, 1600-1604.
- Darvie D.K., Lant C.L., 1994. The effect of CRP enrollment on sediment loads in two southern Illinois streams. J. Soil Water Conserv., 49, 407-412.
- Dillaha T.A., Reneau R.B., Mosraghimi S., Lee D., 1989. Vegetative filter strips for agricultural nonpoint source pollution control. Am. Soc. Ag. Eng., 32. 513-519.
- Edwards W.M., Owens,L.B., 1991. Large storm effects on total soil erosion. J. Soil Water Conserv., 46, 75‑78.
- Ferguson H.J., 1995. Soil survey of Macon County, Missouri. USDA, Soil Conservation Service.
- Garrison P.I, Gerb S.R., Knauer D.R., Wentz D.A., Krohelsji J.T., Bockheim J.G., Gherini S.A., Chen C.H., 1987. Application of the ILWAS model to the Northern Great Lakes States. Lake Reservoir Manage., 3, 356-364.
- Ghidey F., Alberts E.E., 1998. Runoff and soil losses as affected by corn and soybean tillage systems. J. Soil Water Conserv., 53, 64-70.
- Gilliam J.W., 1994. Riparian wetlands and water quality. J. Environ. Qual., 23, 896-900.
- Ginting D., Moncrief J.F., Gupta S.C., Evans S.D., 1998. Corn yield, runoff, and sediment losses from manure and tillage systems. J. Environ. Qual., 27, 1396‑1402.
- Harrod T.R., Theurer F.D., 2002. Sediment. In: “Agriculture, Hydrology and Water Quality», Haygarth P.M. and Jarvis S.C. (Editors), CABI Publishing. New‑ York, NY, USA. 155-170.
- Ice G., Binkley, D., 2003. Forest streamwater concentrations of nitrogen and phosphorus. J. Forest., 101, 21-28.
- Janssen K.A., Pierzynski G.M., Barnes P.L., 1996. Phosphorus losses in runoff water as affected by tillage and phosphorus fertilization. Proceedings of the North Central Extension-Industry Soil Fertility Conference. St. Louis, MO, USA. 20-21 Nov. 1996, 12, 134-141.
- Lal R., 1976. Soil erosion problems on an Alfisol in Nigeria and their control. IITA Monogr. No 1. IITA Nigeria.
- Lowrance R.R., Leonard R., Sheriden J., 1985. Managing riparian ecosystems to control non-point pollution. J. Soil Water Conserv., 40, 87-91.
- Lowrance RR., Todd R., Fail Jr. J., Hendrickson Jr. O., Leonard r., RAsmussen L.,1984. Riparian forests as nutrient filters in agriculture watersheds. Biosci., 34, 371-377.
- Matisoff G., Bonniwell E.C., Whiting P.J., 2002. Soil erosion and sediment sources in an Ohio watershed using beryllium-7, cesium-137, and leaf-210. J. Environ. Qual., 31, 54-61.
- Morgan R.P.C., Martin L., Noble C.A., 1986. Soil erosion in the United Kingdom: a case study from mid-Bedfordshire. Silsoe College Occasional Paper No. 14. Silsoe College, Cranfield Univ., Silsoe, UK.
- Owenby J.R., Ezell D.S., 1992. Monthly station normals of temperature, precipitation, and heating and cooling degree days 1961-90. U.S. Department of Commerce.
- Patty L., Real B., Gril J.J., 1997. The use of grassed buffer strips to remove pesticides, nitrate and soluble phosphorus compounds from runoff water. Pestic. Sci., 49, 243-251.
- Peterjohn W.T., Correll D.L., 1984. Nutrient dynamics in an agricultural watershed: observation on the role of riparian forest. Ecol., 65, 1466-1475.
- Prato T., Wu S., 1991. Erosion, sediment and economic effects of conservation compliance in an agricultural watershed. J. Soil Water Conserv., 46, 211-214.
- Quinton J.N., Catt J.A., Hess T.M., 2001. The selective removal of phosphorus from soil: is event size important? J. Environ. Qual., 30. 538-545.
- Randall G.W., Mulla D.J., 2001. Nitrate nitrogen in surface waters as influenced by climate conditions and agricultural practices. J. Environ. Qual., 30, 330-337.
- Robinson C.A., Ghaffarzadeh M., Cruse R.M., 1996. Vegetative filter strip effects on sediment concentration in cropland runoff. J. Soil Water Conserv., 50, 227-230.
- SAS Institute. 1999. SAS user’s guide. Statistics. SAS Inst., Cary, NC, USA.
- Schmitt T.J., Dosskey M.G., Hoagland K.D., 1999. Filter strip performance and processes for different vegetation, widths and contaminants. J. Environ. Qual., 28, 1479-1489.
- Simon A., Dickerson W., Heins A., 2004. Suspended-sediment transport rates at the 1.5‑year recurrence interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge? Geomorph., 58, 243‑262.
- Steyermark J.B., 1996. Flora of Missouri. 7th ed. The Iowa State University Press. Ames Iowa.
- Udawatta R.P., Motavalli P.P., Garrett H.E., 2004. Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils. J. Environ. Qual., 33, 1709-1719.
- Udawatta R.P., Krstansky J.J, Henderson G.S., Garrett H.E., 2002. Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J. Environ. Qual., 31, 1214‑1225.
- USEPA. 2000. National Water Quality Inventory: 1998 report to congress. EPA 841-R-00-001. Washington, DC, USA.
- USEPA. 1984. Report to Congress: nonpoint source pollution in the U.S. U.S. Govt. Print. Office, Washington, D.C., USA.
- Unklesbay A.G., Vineyard J.D., 1992. Missouri Geology. Univ. of Missouri Press, Columbia, Missouri, USA.
- Wienhold B.J., Tanaka D.L., 2000. Haying, tillage, and nitrogen fertilization influences on infiltration rates at a Conservation Reserve Program site. Soil Sci. Soc. Am. J., 64, 379-381.
- Wigington P.J., Griffith S.M., Field J.A., Baham J.E., Howarth W.R., Owen J., Davis J.H., Rain S.C., Steiner J.J., 2003. Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in Western Oregon. J. Environ. Qual., 32, 162-170.
- Zhao S.L., Gupta S.C., Huggins D.R., Moncrief J.F., 2001. Tillage and nutrient source effects on surface and subsurface water quality at corn planting. J. Environ. Qual., 30, 998-1008.
- ZHENG F., MERRILL S.D., HUANG C., TANAKA D.L., DARBOUX F., LIEBIG M.A., HALVORSON A.D., 2004. Runoff, soil erosion, and erodibility of Conservation Reserve Program land under crop and hay production. Soil. Sci. Soc. Am. J., 68, 1132-1341.