
Tous droits réservés ©  Revue des sciences de l'eau, 2006 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 22 nov. 2024 09:31

Revue des sciences de l'eau
Journal of Water Science

Runoff and Sediment from Row-crop, Row-crop with Grass
Strips, Pasture, and Forest Watersheds
Ruissellement et charges sédimentaires des bassins versants
avec cultures en lignes, cultures en lignes avec bandes
riveraines, pâturages et forêt
Ranjith P. Udawatta, Gray S. Henderson, John R. Jones et R. David Hammer

Volume 19, numéro 2, 2006

URI : https://id.erudit.org/iderudit/013047ar
DOI : https://doi.org/10.7202/013047ar

Aller au sommaire du numéro

Éditeur(s)
Université du Québec - INRS-Eau, Terre et Environnement (INRS-ETE)

ISSN
1718-8598 (numérique)

Découvrir la revue

Citer cet article
Udawatta, R. P., Henderson, G. S., Jones, J. R. & Hammer, R. D. (2006). Runoff
and Sediment from Row-crop, Row-crop with Grass Strips, Pasture, and Forest
Watersheds. Revue des sciences de l'eau / Journal of Water Science, 19(2),
137–149. https://doi.org/10.7202/013047ar

Résumé de l'article
Les études comparant les volumes de ruissellement et les charges
sédimentaires de bassins versants avec cultures en lignes et pâturages avec et
sans zones tampons et bandes riveraines sont peu nombreuses. Les effets des
précipitations, de l’occupation du sol et des conditions des zones tampons sur
le ruissellement et les charges sédimentaires ont été analysés de 1997 à 1999
pour huit bassins versants comportant en proportions diverses des cultures en
lignes, des pâturages, des zones tampons et des bandes riveraines. Il a été
montré que les volumes de ruissellement et les charges sédimentaires pour les
bassins versants avec cultures en lignes étaient inversement proportionnels
aux pourcentages de forêt et de pâturages présents sur ces bassins. Les
moyennes mesurées sur trois ans des volumes de ruissellement des bassins
versants de type forestier, avec pâturages, avec cultures en lignes et avec
cultures en lignes et bandes riveraines (RC‑GFS) sont de 939, 1 560, 3 434 et
1 175 m3/ha/an respectivement. Les volumes de ruissellement mesurés
pendant une année pour toutes les occupations du territoire ont été plus
grands lorsque les précipitations ont été supérieures de 36 % à la normale
(1998). L’événement générant le volume de ruissellement le plus important à
survenir sur chaque bassin versant génère à lui seul de 11 % à 25 % du volume
de ruissellement total mesuré. Les charges sédimentaires pour les bassins
versants forestiers, avec pâturages, avec cultures en lignes et RC‑GFS ont été
respectivement de 1 017, 1 241, 3 679, et 2 129 kg/ha/an respectivement. En
1998, les charges sédimentaires des bassins versants RC‑GFS ont été plus
importantes que les bassins avec cultures en lignes alors que les volumes de
ruissellement et les charges sédimentaires sur ces mêmes bassins ont été plus
petits lors d’années avec des précipitations égales ou inférieures à la moyenne.
Les bassins avec cultures en lignes et comportant 55 % de pâturages
permettent une réduction de l’ordre de 55 % des volumes de ruissellement et
de 66 % des charges sédimentaires lorsque comparés aux bassins avec cultures
en lignes. Les charges sédimentaires mesurées à l’exutoire des bassins avec
cultures en lignes ont été plus élevées pour 90 % des événements que celles
issues des bassins avec pâturages ou forestiers. Les résultats de cette étude
montrent que des bandes riveraines de 3 à 4 m, le maintien de plus de 55 % du
territoire sous forme de pâturages/CRP pour des bassins avec cultures en lignes
et la présence de bandes riveraines permettent de réduire de façon
significative les volumes de ruissellement et les charges sédimentaires des
bassins versants avec cultures en lignes.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/rseau/
https://id.erudit.org/iderudit/013047ar
https://doi.org/10.7202/013047ar
https://www.erudit.org/fr/revues/rseau/2006-v19-n2-rseau1282/
https://www.erudit.org/fr/revues/rseau/


RUNOFF AND SEDIMENT FROM ROW-CROP, ROW-CROP WITH 
GRASS STRIPS, PASTURE, AND FOREST WATERSHEDS

Ruissellement et charges sédimentaires des bassins versants avec cultures en lignes, cultures en lignes avec bandes  
riveraines, pâturages et forêt

Ranjith P. Udawatta*1, Gray S. Henderson2, John R. Jones3, and R. David Hammer4

1Center for Agroforestry and Department of  Soil, Environmental and Atmospheric Sciences, School of  Natural Resources, 
University of  Missouri, Columbia, MO 652111.

2Department of  Forestry, School of  Natural Resources, University of  Missouri, Columbia, MO 652112.
3Department Fisheries and Wildlife Sciences, School of  Natural Resources, University of  Missouri, Columbia, MO 652113.

4National Soil Survey Center, 100 Centennial Mall, North Room 152, Mail Stop 41., Lincoln, NE 68508-38664.

 Reçu le 17 décembre 2004, accepté le 17 août 2005

*Corresponding author: 
Tél.: 573-882-4347
Fax: 573-882-1977 
E-mail: UdawattaR@missouri.edu Revue des Sciences de l’Eau 19(2) (2006) 137-149ISSN : 1718-8598

RÉSUMÉ

Les études comparant les volumes de ruissellement et 
les charges sédimentaires de bassins versants avec cultures 
en lignes et pâturages avec et sans zones tampons et bandes 
riveraines sont peu nombreuses. Les effets des précipitations, 
de l’occupation du sol et des conditions des zones tampons sur 
le ruissellement et les charges sédimentaires ont été analysés 
de 1997 à 1999 pour huit bassins versants comportant en 
proportions diverses des cultures en lignes, des pâturages, 
des zones tampons et des bandes riveraines. Il a été montré 
que les volumes de ruissellement et les charges sédimentaires 
pour les bassins versants avec cultures en lignes étaient 
inversement proportionnels aux pourcentages de forêt et de 
pâturages présents sur ces bassins. Les moyennes mesurées sur 
trois ans des volumes de ruissellement des bassins versants de 
type forestier, avec pâturages, avec cultures en lignes et avec 
cultures en lignes et bandes riveraines (RC-GFS) sont de 
939, 1 560, 3 434 et 1 175 m3/ha/an respectivement.  Les 
volumes de ruissellement mesurés pendant une année pour 

toutes les occupations du territoire ont été plus grands lorsque 
les précipitations ont été supérieures de 36 % à la normale 
(1998). L’événement générant le volume de ruissellement le 
plus important à survenir sur chaque bassin versant génère à lui 
seul de 11 % à 25 % du volume de ruissellement total mesuré. 
Les charges sédimentaires pour les bassins versants forestiers, 
avec pâturages, avec cultures en lignes et RC-GFS ont été 
respectivement de 1 017, 1 241, 3 679, et 2 129 kg/ha/an 
respectivement. En 1998, les charges sédimentaires des bassins 
versants RC-GFS ont été plus importantes que les bassins avec 
cultures en lignes alors que les volumes de ruissellement et les 
charges sédimentaires sur ces mêmes bassins ont été plus petits 
lors d’années avec des précipitations égales ou inférieures à la 
moyenne. Les bassins avec cultures en lignes et comportant 
55 % de pâturages permettent une réduction de l’ordre de 
55 % des volumes de ruissellement et de 66 % des charges 
sédimentaires lorsque comparés aux bassins avec cultures en 
lignes. Les charges sédimentaires mesurées à l’exutoire des 
bassins avec cultures en lignes ont été plus élevées pour 90 % 
des événements que celles issues des bassins avec pâturages ou 
forestiers. Les résultats de cette étude montrent que des bandes 
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riveraines de 3 à 4 m, le maintien de plus de 55 % du territoire 
sous forme de pâturages/CRP pour des bassins avec cultures 
en lignes et la présence de bandes riveraines permettent de 
réduire de façon significative les volumes de ruissellement et 
les charges sédimentaires des bassins versants avec cultures en 
lignes.

Mots clés : Ruissellement, sédiment, cultures en lignes, 
forêt, bandes riveraines, CRP/pâturages

ABSTRACT

Comparisons of runoff and sediment loss from row-crop 
with and without riparian buffers, pasture and grass filter 
strips are limited.  Effects of precipitation, landuse and buffer 
condition on runoff and sediment loss were examined from 
1997 to 1999 in eight watersheds with varying proportions 
of row-crop, pasture, riparian buffers and grass filter strips.  
Runoff volume and sediment mass from row-crop watersheds 
were inversely related to the percentage of forest and pasture 
cover. Forest (n = 2), pasture (n = 3), row-crop (n = 2) and 
a row-crop watershed with grass filter strips (RC-GFS) had 
3-yr mean runoff of 939, 1,560, 3,434 and 1,175 m3 ha-1 
yr-1, respectively.  Runoff was greater from all landuses in a 
year when precipitation was 36% above normal (1998). The 
largest single runoff event from each watershed accounted for 
11 to 25% of its total runoff. Forest, pasture, row-crop and 
RC-GFS watersheds lost 1,017, 1,241, 3,679 and 2,129 kg  
ha-1 yr-1 of sediment, respectively. In 1998, the RC-GFS 
watershed lost more sediment than row-crop watersheds and 
had less runoff and sediment loss in years with normal or 
below normal precipitation.  Row-crop watersheds with 55% 
pasture reduced runoff and sediment loss by 55 and 66%, 
respectively, compared to row-crop watersheds. During 90% of 
the runoff events, more soil was lost from row-crop watersheds 
than pasture or forest watersheds. Results suggest that 3-4 m 
grass filter strips, maintenance of 55% or more pasture/CRP 
land within row-crop watersheds and intact riparian buffers 
significantly reduce runoff and sediment losses from row-crop 
watersheds.

Key words: Runoff, Sediment, Row-crop, Forest, Grass filter 
strips, CRP/pasture

1. INTRODUCTION

Agricultural activities often impact the quality of surface 
and ground waters (CARPENTER et al., 1998; USEPA, 
1984).  Suspended sediment in surface runoff is the most visible 
agriculturally derived non point source pollutant (NPSP) 

(GINTING et al., 1998), while excess nutrients are the single 
most important cause of impairment of lakes and the third 
most important cause of impairment for rivers and streams 
in the United States (USEPA, 2000).  The main pathways by 
which agrochemicals, microbes and nutrients are removed from 
agricultural watersheds are runoff and suspended sediment 
losses (HARROD and THEURER, 2002; QUINTON et al., 
2001).  Therefore, evaluation of runoff and sediment loss in 
watersheds is fundamental to the development of management 
strategies for sediment and sediment-bound nutrient losses 
(MATISOFF et al., 2002).

Several studies have substantiated that riparian areas and 
grass filter strips are important for water quality preservation 
(COOPER and GILLIAM, 1987; DILLAHA et al., 1989; 
GILLIAM, 1994; LOWRANCE et al., 1984; PETERJOHN 
and CORRELL, 1984; SCHMITT et al., 1999; 
WIGINGTON, et al., 2003). Vegetative filter strips also are 
an effective best management practice for controlling sediment 
and sediment-bound nutrients with removal efficiencies 
ranging from 53 to 98% of sediment in runoff (DILLAHA et 
al., 1989; ROBINSON et al., 1996; SCHMITT et al., 1999). 
Incorporation of pasture and hay in row-crop watersheds also 
reduces soil erosion (PRATO and WU, 1991). Sediment 
loss mainly occurs in surface runoff (ZHAO et al., 2001), 
and therefore hydrologic pathways of water as it moves from 
agricultural fields to streams are a critical determinant of the 
effectiveness of buffers (WIGINGTON et al., 2003). Riparian 
and grass buffer strips remove sediment from surface water 
by diffusing surface flow, increasing infiltration and trapping 
sediment (ROBINSON et al., 1996). Physical, chemical and 
biological processes within a buffer, as well as soil, site and 
management practices influence the transport, transformation 
and retention of sediment. Studying more than 2,900 sites 
across the United States, SIMON et al. (2004) found sediment 
losses in runoff from agricultural land vary with ecoregion; 
highest suspended sediment loss occurred in humid regions 
with erodible soils on steep slopes or channel gradients.

Runoff and sediment loss are influenced by type of crop, 
season and tillage system. At the Claypan Experimental farm in 
Missouri, mean annual runoff and soil loss for soybean (Glycine 
max L. Merr.) were 3 and 12% higher than those for corn (Zea 
mays L.), respectively (GHIDEY and ALBERTS, 1998).  This 
study found fallow-period soil loss was five times higher than 
the cropping period. In a soybean-sorghum rotational study in 
East-central Kansas, 3-yr average sediment losses on ridge-till 
and chisel-disk land preparations were 2- and 3-fold greater 
than no-till, respectively (JANSSEN et al., 1996).  Even 
agricultural watersheds under no- or minimum-tillage lose soil 
in runoff (CHUNG et al., 1999).

Runoff volume and sediment loss vary widely during 
individual storm events, annual cycles and over time (CASSELL 
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et al., 1998; QUINTON et al., 2001; RANDALL and MULLA, 
2001; ROBINSON et al., 1996). Soil loss generally parallels 
runoff, but intensity and amounts of individual rainfall events 
influence loss (JANSSEN et al., 1996).  EDWARDS and 
OWNENS (1991) observed the largest three erosional events 
caused more than 50% of the total soil loss, an observation 
supported by research in the UK (MORGAN et al., 1986), 
USA (ROBINSON et al., 1996) and Nigeria (LAL, 1976). 
In a 7-yr study of three adjacent watersheds in corn-soybean 
rotation, UDAWATTA et al. (2004) found the five largest 
runoff events and five largest sediment losses accounted for 
27% and 24% of P loss, respectively.

States are required to implement water quality criteria, based 
on USEPA guidelines or other scientifically defensible methods 
(ICE and BINKLEY, 2003). Land owners, state agencies and 
other regulatory authorities need scientifically defensible, 
practically achievable and biologically relevant standards for 
proper development and successful implementation of water 
quality guidelines. Although riparian buffer strips, pasture 
land and grass filter strips seem advantageous to reduce NPSP 
from agricultural watersheds, from economic and practical 
perspectives, experimental studies comparing effectiveness of 
these managements by ecoregion or landuse are largely missing 
from the literature. This paper examines (1) the effects of 
landuse, pasture and row-crops with and without grass filter 

 

Figure 1 Long Branch Watershed and Reservoir in Macon and Adair 
Counties, Missouri, USA and approximate location of eight 
watersheds within the Long Branch Watershed.

 Bassin versant et réservoir Long Branch dans les comtés Macon 
et Adair, Missouri, États-Unis et localisation approximative 
des huit bassins sous étude dans le bassin versant Long 
Branch.

Table 1 Summary of forest, pasture and row-crop cover percentages 
and area of eight watersheds. 

Tableau 1  Occupation du territoire pour les huit sous-bassins à l’étude.

strips on discharge of water and sediment and (2) the effects of 
precipitation distribution on runoff and sediment loss.

2. MATERIALS AND METHODS

2.1 Study Area and Watershed Characteristics

Watersheds located within the Long Branch Watershed 
in Macon and Adair Counties (39° 50’ N to 40° 05’ N and 
90° 32’ W to 92° 20’ W), Missouri, USA, were studied during 
1997-1999 (Figure 1). Three land management types were 
included: at one extreme, forest catchments (n = 2), and at the 
other extreme, row-crop (n = 3) catchments with virtually no 
riparian vegetation, and pasture/Conservation Reserve Program 
(CRP) catchments (n = 3) as the intermediate condition. The 
two forest catchments were within the state-owned Atlanta 
Conservation Area.

Study watersheds ranged in area from 21 to 259 ha, and 
landuse within each watershed is summarized in table 1. 
Areal land use patterns were measured from 1:24,000 areal 
photographs (provided by Adair and Macon County, USDA 
Service Stations). Landuse classification was verified by 
observations during the study. Watersheds were identified 

Watershed Area
Cover distribution

Forest Pasture Row-crop
-- ha --           ---------------------- % --------------------

Forest

100 65 84 2 12

101 87 94 0 4

Pasture

200 70 28 66 6

201 30 43 57 0

202 26 18 41 41

Row-crop

300 140 7 7 86

301 259 4 22 75

RC-GFS (400) 21 0 0 100
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based on major land management type: forest (1xx), pasture 
(2xx), and row-crop (3xx). Within each land management 
category, the northern-most watershed was assigned the 
smallest number and vice versa (Figure 1). One row-crop 
watershed (400) received irrigation water from the La Plata 
Water Treatment Plant. Watershed 400 does not have a forested 
riparian buffer zone but has a 3 to 4 m wide dense grass filter 
strip along the stream. Therefore, this watershed was classified 
as a row-crop watershed with a grass filter strip (RC-GFS).  
These watersheds had low human population with no sewage 
outfalls.  Cattle were present during certain periods in summer 
in watershed 202.

Pre-settlement vegetation was dominated by forests and 
tall, native grass prairies well-adapted to climate and soils of 
the area (FERGUSON, 1995; STEYERMARK, 1996). The 
dominant trees in forest tracts and riparian areas were white 
oak (Quercus alba L.), black oak (Q. velutina Lam.), post oak 
(Q. Stellata Wangenh.), pin oak (Q. Palustris Muenchh.), 
hickory (Carya spp.), elm (Ulmus spp.), osage orange (Maclora 
pomifera) and cedar (Juniperus virginiana).

Agricultural watersheds were in a corn (Zea mays L.)-soybean 
(Glycine max (L.) Merr.) rotation under minimum- or no-till 
cultivation. Wheat and sorghum represented little land cover 
in row-crop watersheds. Pasture/CRP watersheds were mainly 
under CRP. Fescue (Festuca spp.), golden rod (Solidago spp.) 
and cool season grasses were common in pasture watersheds. 
Row-crop and pasture watersheds contained varying degrees 
of forest riparian buffer (Table 1).

Soils in the region are developed from glacial till, loess, 
and pedisediment (FERGUSON, 1995). The surface was 
created by glaciation. Some soils are formed from loess and 
underlying pedisediment (UNKLESBAY and VINEYARD, 
1992). The landscape is characterized by gently to strongly 
sloping uplands.

The average snowfall in the study area is about 61 cm and 
generally lasts several weeks. The average winter temperature is 
-2.2°C and average daily minimum is -7.7°C. In summer, the 
average temperature is 23.9°C and average daily maximum is 
30°C. The 30-yr precipitation averages 967 mm, about 65% 
of which falls in April through September (OWENBY and 
EZELL, 1992).

2.2  Sample Collection and Analysis

ISCO samplers and flow measuring devices (Lincoln, NE, 
USA) were installed annually in late February or during the 
first week of March (1997, 1998, and 1999) to record flow 
rate, water level, sampling time and collect water samples. 
Thus, the sample collection period extended from March to 

December each year. Generally, streams were frozen during 
winter, and little or no stream flow occurred.

All eight streams were surveyed and stream characteristics 
were fitted to Manning’s equation to estimate water flow from 
rating curves of flow versus depth. Flow measuring devices 
controlled the sampler to collect water samples. Samples were 
collected at 30-minute intervals from the rising limb of the 
hydrograph and at 90-minute intervals from the falling limb 
of the hydrograph. During 1999, samples were collected 
based on pacing volume, such that after a set amount of water 
flow, the flow meter would signal sample collection. Because 
runoff varies with watershed size, landuse patterns and season, 
pacing volumes were larger for large row-crop watersheds 
(300:1,400 m3 and 301: 4,000 m3) compared to the small row-
crop (400: 200 m3), pasture (200: 300 m3 and 202: 200 m3), 
and forest (100: 600 m3) watersheds. Samples were delivered 
to collection bottles through vinyl suction tubes that were first 
rinsed with stream water. Sample inlets were positioned in the 
middle of the stream.

During some weeks, flow was either too low to generate 
an automatic sample or the sampler failed. If a sampler 
malfunction was detected, the sampler was replaced as 
soon as possible. Samplers on watersheds 100 (22-6-97 and 
12-3-98) and 201 (18-5-97) failed due to sand blocking the 
suction line. The sampler and flow meter on watershed 301 
was damaged twice (18-9-97 and 29-6-98) by lightning. The 
sampler housing for watershed 300 was placed on a four-foot 
shelf, but stream flow inundated the stream bank area several 
times during the study period. After a runoff event, flow, level 
and sample intake time data were downloaded from recorders. 
Water samples were transferred from the field to the laboratory 
and individual samples were analyzed for all the parameters 
of interest during the first two years of the study. During the 
third year (1999), composite samples from each runoff event 
were analyzed.

A known volume of well mixed sample was filtered 
through a pre-weighed glass microfiber filter (934-AH) using a 
vacuum pump (maximum vacuum 7 lbs in -2 above ambient) 
to estimate sediment weight. These filters were dried at 105°C 
to a constant weight and dry weight was recorded. Differences 
between the tare weight and sample volume were used to 
estimate the weight of total suspended sediment. Samples were 
refrigerated at 4°C until analysis.

2.3  Statistical Analysis

Statistical analysis of data was performed using SAS 
(SAS INSTITUTE, 1999). Normal distributions of runoff 
and sediment losses were tested using Shapiro-Wilk and 
Kolmogorov-Smirnov tests and log transformed data were 
used for further analysis. Random variables were analyzed as 
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a split-plot intime using the procmixed procedure in SAS. 
The main plot consisted of land management (treatments) 
and the subplot consisted of year and interaction of land 
management*year. Watersheds within a treatment were used 
as the denominator of F for the main plot (land management) 
effect.  Watersheds within a land management and year was used 
as the denominator of F for the sub-plot (year and interaction 
of land management*year) effects.  The residual mean square 
represented multiple observations within a year watershed 
combination.  The fixed effects are land management, year and 
the interaction of land management*year.  Mean differences 
were determined using Fisher Least Significance (LSD) and 
were calculated using Lsmeans statement within the Procmixed 
procedure.  The variance covariance matrix was investigated 
using AIC coefficient to determine the most suitable mean 
separation procedure.

3. RESULTS 

3.1 Precipitation and Stream Flow

Long Branch (LB) and Kirksville Radio Station (KRS) 
weather stations received 21% and 13% less precipitation 
in 1999 (March to August) compared to the 30-yr average, 
respectively (Figure 2). These two stations also received 18.5% 
and 10% less in 1997. Whereas during 1998, the region 
received 36% (LB: 43 and KRS: 30%) more rain compared to 
the 30-yr average.

The study area received rain on 62 dates ranging from 
a trace to 43 mm in 1999. No measurable runoff events 
occurred after 17 May, 1999. During the 1997 sampling 

Figure 2 Precipitation distribution for the study area from Long Branch Weather Station during 1997-1999 (July and August 1999 
data were not available).

 Distribution des précipitations pour le territoire à l’étude de la station météorologique Long Branch durant la période 1997-
1999 (les données de juillet et août 1999 n’étaient pas disponibles).

Year
Watershed

100 101 200 201 202 300 301 400

1997 6 2 9 8 10 14 21 16
1998 16 13 17 19 16 18 20 22

1999 8 † 7 † 8 10 9 8
Total 30 15 33 27 34 42 50 46

    † Not sampled in 1999

Table 2 Measurable runoff events during 1997-1999 for eight watersheds. 
Tableau 2 Événements de ruissellement mesurables pendant la période 1997-1999 pour les huit bassins sous étude.
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period, rain occurred on 136 dates, ranging from a trace to a 
maximum of 54 mm. Rainfall events generating runoff ranged 
from 2.5 to 54 mm in study watersheds. Rain ranging from a 
trace to 132 mm was recorded in 1998 and 22 storm events on 
average produced more than 13 mm of precipitation.  Rainfall 
generating runoff ranged from 9 to 128 in the watersheds.

Measurable runoff events from watersheds generally 
followed precipitation (Table 2). During sampling in 1999, 
forest watershed 100, the pasture and the row-crop watersheds 
produced 8, 7 and 9 runoff events, respectively. In 1997, the 
two forest watersheds, on average, produced four measurable 
flows (100: 6 and 101: 2). Pasture and row-crop catchments 
recorded 9 and 17 runoff events in 1997, respectively. Sampling 
year 1998 resulted in 14, 17 and 20 measurable runoff events 
from forest, pasture, and row-crop land uses, respectively.

3.2  Runoff Volume

The 3-yr mean annual discharge of water per area differed 
greatly among watersheds, ranging from 563 m3 ha-1 yr-1 
(200) to 3771 m3 ha-1  yr-1 (301; Table 3). The 3-yr mean 
runoff volumes from forest, pasture, row-crop and RC-
GFS land management types were 939, 1,560, 3,434 and 
1,175 m3 ha-1 yr-1, respectively (Figure 3). The 3-yr mean 
annual runoff for the row-crop land management was 3.7, 2.2 
and 2.9 times larger than that of forest, pasture and RC-GFS 
types, respectively.  However, runoff volumes between the row-

crop and RC-GFS watersheds were not significantly different 
(p ≤ 0.08). Pasture and RC-GFS watersheds produced 1.7 and 
1.3 times more runoff than forest watersheds, respectively.

3.3  Large Runoff Events

Discharge varied with rainfall, and maximum runoff from 
the study watersheds occurred on different dates. Watersheds 
100 (375 m3 ha-1), 200 (237 m3 ha-1), 201 (361 m3 ha-1) 
and 400 (394 m3 ha-1) had maximum runoff on 4 July, 
1998 (Figure 4). Runoff events on 30 March, 1998 caused 
maximum runoff on watersheds 300 (1,121 m3 ha-1) and 202 
(333 m3 ha-1), respectively. Watersheds 101 (462 m3 ha-1) and 
301 (1,111 m3 ha-1) had maximum runoff on 14 March, 1998 
and 14 April, 1999, respectively. Due to lightning damage, 
runoff data were not available for watershed 301 on 4 July, 
1998 which was probably the largest event during the study.

The largest single runoff event in each land management 
category accounted for 20%, 12%, 25% and 11% of the 
total runoff in forest, pasture, row-crop and RC-GFS 
watersheds, respectively (Table 4). The proportion of total 
runoff contributed by the largest runoff event varied among 
watersheds. Largest events from forest watersheds 100 and 
101 accounted for 13% and 27% of the total discharge, 
respectively. Differences among watersheds within a given 
land use type were larger between the two forest watersheds 
than the other categories. The largest runoff events from the 

Watershed Mean
Year

1997 1998 1999

      ------------------------------------------------ m3 ha-1 yr-1 ---------------------------------------
Forest

100 1022 538 1725 803

101 857 241 1473 †

     Mean 939 389 1599 803

Pasture

200 563 294 1175 220

201 3022 738 5307 †

202 1096 745 1714 831

   Mean 1560 592 2732 525

Row-crop

300 3098 1490 5495 2310

301 3771 1924 5631 3759

   Mean 3434 1707 5563 3034

RC-GFS 1175 1134 1967 517

† Not sampled

Table 3 Mean and annual runoff volumes during the three-year study period for four landuse types and for eight 
watersheds.

Tableau 3 Moyennes et volumes annuels de ruissellement pour les trois années d’étude selon les quatre types d’occupation du 
territoire et les huit bassins.
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Figure 3 Mean runoff for forest, pasture, row-crop and row-crop-grass 
filter strip watersheds.

 Ruissellement moyen pour les bassins forestiers, avec 
pâturages, avec cultures en lignes et avec cultures en lignes et 
bandes riveraines.
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Figure 4 The maximum runoff volumes on the eight watersheds during 
the three-year study.

 Volume de ruissellement maximum pour les huit bassins sous 
étude pendant la période de trois ans.

Table 4 Cumulative percentage of total runoff from the three largest 
runoff events during the three-year study period for eight 
watersheds and four landuse types.

Tableau 4 Pourcentage cumulatif du volume de ruissellement pour les 
trois événements les plus importants à survenir sur la période 
d’étude pour les huit bassins et les quatre occupations du 
territoire.

Table 5 Mean and annual soil loss during the three-year study period 
for four landuse types and for eight watersheds. 

Tableau 5 Moyennes et charges sédimentaires annuelles pour la période 
d’étude pour les quatre occupations du territoire et les huit 
bassins sous étude.

Watershed
Storm rank

1 2 3

-------------------- % --------------------

Forest

100 13 24 33

101 27 43 57

Mean 20 33 45

Pasture

200 14 22 29

201 13 21 28

202 10 19 27

Mean 12 21 28

Row-crop

300 26 36 42

301 24 31 38

Mean 25 33 40
RC-GFS 11 18 25

Watershed Mean
Year

1997 1998 1999

                              ------------------------ kg ha-1 yr-1 -----------------------
Forest

100 1247 784 1428 1529

101 788 273 1304 †

Mean 1017 528 1366 1529

Pasture

200 1237 1380 2122 211

201 1748 544 2952 †

202 738 151 1416 649

Mean 1241 691 2163 430

Row-crop

300 3777 3498 3499 4335

301 3581 2304 3585 4856

Mean 3679 2901 3542 4595
RC-GFS 2129 428 4082 1877

† Not sampled
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Figure 5 Mean sediment loss from forest, pasture, row-crop and row-
crop-grass filter strip watersheds.

 Charges sédimentaires moyennes pour les bassins forestiers, 
avec pâturages, avec cultures en lignes et avec cultures en 
lignes et bandes riveraines.

pasture watersheds accounted for 10-14% of the total, and in 
row-crop, the value was 24-26%.

3.4  Total Suspended Sediment Loss (TSS)

Three-yr mean soil erosion values from the eight 
watersheds ranged between 738 (202) and 3,777 (300) 
kg ha-1 yr-1 (Table  5). The 3-yr mean soil erosion on forest, 
pasture, row-crop and RC-GFS were 1,017, 1,241, 3,679 
and 2,129 kg ha-1 yr-1, respectively, (Figure 5). Row-crop 
watersheds lost 3.6 and 2.9 times more soil compared to forest 
and pasture watersheds, respectively. Row-crop watershed with 
grass filter strip (400) and pasture watersheds lost only 58 and 
34% soil, respectively, compared with row-crop watersheds 
(Figure 4).

Row-crop watersheds lost 2,901 kg TSS ha-1 yr-1 in 1997 
(Table 5). Soil loss from row-crop watersheds in 1997 was 5.5, 
4.2 and 6.8 times greater than forest, pasture and RC-GFS 
land managements, respectively. Soil erosion in 1997 and 
1999 on the RC-GFS was only15% and 41% of that on two 
row-crop watersheds (Table 5). Most storm events occurred 
early in 1999 and caused severe erosion when the ground was 
bare and before the soil lost its recharge. The two row-crop 
watersheds had more erosion in 1999 than in 1997 or 1998.

Watershed
Storm rank

1 2 3

Forest
--------------------- % ---------------------

100 15 28 38

101 28 56 68

Mean 21 42 53

Pasture

200 22 35 47

201 16 27 38

202 24 38 50

Mean 21 33 45

Row-crop

300 33 53 63

301 24 39 47

Mean 28 46 55
RC-GFS 23 36 42

Table 6 Cumulative percentage of total erosion from the three largest 
runoff events during the three-year study period for eight 
watersheds and four landuse types.

Tableau 6 Pourcentage cumulatif de la charge sédimentaire pour les trois 
événements les plus importants à survenir durant la période 
considérée pour les huit bassins et les quatre occupations du 
territoire sous étude.

3.5  Sediment Loss During Large Storm Events

The largest single runoff event accounted for 21% to 
28% of total soil loss among the various land management 
categories during the 3-yr study (Table 6). The percentage of 
soil loss caused by the largest single event among watersheds 
varied between 15% and 33% in this study. Averaged over 
eight watersheds, the single biggest runoff event accounted for 
23% of the total soil loss measured during the study period. 
The largest three runoff events accounted for over half of the 
total erosion from forest and row-crop watersheds. Pasture 
and RC-GFS watersheds lost 45% and 42% of the total loss 
during the largest three events. The largest two and three 
episodes caused 39% and 49% of the total soil loss from all 
eight watersheds during the 3-yr study period. 

3.6  Erosion on Forest and Pasture, versus Row-crop Watersheds

The 2-yr mean erosion values for the forest and pasture 
watersheds were 947 and 1,427 kg ha-1 yr-1, respectively 
(Table 7). Using the 2-yr mean erosion amounts on forest 
and pasture land managements as base values, we compared 
erosion on the row-crop watersheds (300 and 301) and the 
RC-GFS (400) watershed to quantify the proportion of events 
on row-crop and RC-GFS watersheds that generated erosion 
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Forest Pasture
Watershed 1997 1998 1999 3-yr 1997 1998 1999 3-yr

   ------------------------- % ------------------------       -------------------------- % -------------------------
300 14 5.5 0 9.5 21 5.5 0 9.5

301 14 15 0 12 24 15 0 16
400 25 4.5 0 10.9 31 9 0 15

Table 7 Number of runoff events as a percentage of total events on the three row-crop watersheds with soil erosion 
less than the mean soil erosion on forest (947 kg ha-1 yr-1) and pasture (1427 kg ha-1 yr-1) landuse types for 
individual years and for the three years of the study.

Tableau 7 Nombre d’événements et pourcentage du nombre total d’événements de ruissellement pour les trois bassins avec 
culture en lignes dont l’érosion a été moindre que celle mesurée sur les occupations de territoire de types forestier 
(947 kg/ha/an), et avec pâturages (1 427 kg/ha/an) pour chacune des années d’étude.

equal to or less than the 2-yr mean erosion from forest and 
pasture watersheds.

None of the events in 1999 had erosion amounts similar 
to that from forest or pasture watersheds (Table 7). The above 
normal precipitation in the previous year and early season runoff 
in 1999 caused severe erosion on all row-crop watersheds even 
though the study area received below average precipitation. 
In 1997, 14% and 25% of erosion events on row-crop and 
RC-GFS watersheds had erosion amounts similar to forest 
watersheds. In 1998, relatively few erosion events on row-crop 
watersheds generated erosion amounts that were similar to or 
less than those of forest and pasture watersheds. During the 
3-yr study, watersheds 300, 301 and 400, had 10, 12 and 11% 
of erosion events that were similar or less than the erosion on 
forest watersheds, respectively (Table 7). Approximately 90% 
of erosion events from row-crop watersheds exceeded the mean 
erosion on forest and pasture watersheds.

4. DISCUSSION

4.1  Effects of Precipitation, Watersheds and Sampling

Annual, seasonal and within growing season variation in 
the frequency and intensity of precipitation influenced runoff. 
The study region received 16% less precipitation than the 30-yr 
average in 1997 and 1999, and runoff from all watersheds was 
lower compared to runoff on 1998 regardless of land cover type 
(Table 3). Annual rainfall during 1998 at each weather station 
was about 36% greater than the 30-yr average. Consequently, 
runoff volumes were also above long-term averages for the area 
and most watersheds had the largest runoff. This observation is 
supported by a 10-yr study with three adjacent corn-soybean 
rotational watersheds in northeast Missouri, where 27 or more 
runoff events occurred when precipitation was above 40% and 
fewer events when precipitation was normal or below normal 
(UDAWATTA et al., 2002).

We also assumed that watershed boundaries coincided 
with topographically defined catchment of the surface runoff. 
All of our agricultural watersheds varied by less than 2 m 
elevation, and therefore, boundary demarcations and the true 
watershed area may be inexact. Surface runoff and ground 
water can cross topographically defined boundaries, so the 
collection area of the stream becomes uncertain (GARRISON 
et al., 1987). ISCO submerged probes measure and collection 
strainers collect when flow was greater than 2.5 cm. Runoff 
occurred due to low level flow events could also account for the 
slightly larger annual total discharges from these watersheds. 
Hydrologic variability among watersheds also may have 
resulted in a wide range of runoff volumes within a land use 
category (EDWARDS and OWENS, 1991; LOWRANCE et 
al., 1985; PETERJOHN and CORRELL, 1984; QUINTON 
et al., 2001; UDAWATTA et al., 2002; 2004; ZHENG et al., 
2004). Differences in discharge can also be due to erosional 
stage of the watershed and vegetation condition.

4.2  Effect of Landuse

In spite of differences in precipitation and soils among 
watersheds, the general effects of landuse on runoff and 
sediment loss were evident. Overall, forest watersheds did not 
have as many runoff events compared to pasture or row-crop 
watersheds. Forest watersheds had 18% and 72% less sediment 
loss than pasture and row-crop landuse. Literature supports 
that forest watersheds in general have less runoff and sediment 
loss (LOWRANCE et al., 1985). The two watersheds are 
located in the Atlanta Conservation Area and are > 85% forest. 
Forest vegetation reduces runoff, soil erosion and nutrient loss 
from watersheds and improves infiltration and water holding 
capacity of soils (LOWRANCE et al., 1985; GILLIAM, 1994). 
In contrast, row-crop watersheds had the largest discharges of 
runoff (3,434 m3 ha-1 yr-1) and sediment (3,679 kg ha-1 yr-1). 
These two watersheds had degraded riparian buffers with 
sparsely distributed understory growth. The riparian corridor 
on watershed 300 has poorly drained soils and most of the 
time soils remained wet. The other row-crop watershed (301) 
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has a small buffer strip along the stream and its stream incision 
is deep. Watersheds with less homogeneous soils, surface slopes, 
management and non-uniform buffers may result in short 
circuiting of surface runoff where runoff flows preferentially 
through only parts of the buffer strip.

Research shows that grass strips reduce runoff and sediment 
losses ranging from 30-90% and 60-90%, respectively (PATTY 
et al., 1997; ROBINSON et al., 1996; SCHMITT et al., 
1999). Discharge from the RC-GFS watershed was 34%, 64% 
and 83% less than that from row-crop watersheds in 1997, 
1998 and 1999, respectively. The grass filter strip along the 
stream was 3-4 m wide and may have utilized water in spring 
and early summer, thus runoff and erosion losses were less than 
that of row-crop watersheds. During 1997 and 1999, the study 
area received 16% less precipitation than the 30-yr mean and 
the grass filter strip on the RC-GFS watershed reduced soil 
erosion by 85 and 60% relative to the other two row-crop 
watersheds, respectively. Most of the sediment reduction occurs 
within the first 7.5 m width of the strip (SCHMITT et al., 
1999).  In 1998, the RC-GFS watershed lost 15% more soil 
than row-crop watersheds. During above normal precipitation 
in 1998, the width of the filter strip may have been insufficient 
to control erosion because transpiration loss of the permanent 
vegetation and infiltration capacity of the soil may have been 
exceeded by runoff and antecedent water content. The results 
showed that grass filter strips provide a way to improve surface 
water quality in agricultural watersheds, and they are more 
effective in years with normal precipitation distributions and 
under low flow conditions.

CRP/Pasture watersheds had 65%, 50% and 83% less 
runoff in 1997, 1998 and 1999 than row-crop watersheds 
and reduced sediment loss by 55% relative to row-crop land 
management. These watersheds, on average, contained 30% 
and 55% forest and pasture covers, respectively (Table 1). 
CRP/pasture has been shown to increase soil structure due to 
the presence of live and dead roots, fungal hypae and other 
organic material than do annual vegetation and thereby reduce 
runoff and sediment loss (WIENHOLD and TANAKA, 2000; 
ZHENG et al., 2004). DARVIE and LANT (1994) stated that 
conversion of row-crop areas in Illinois to CRP would reduce 
erosion by 30%. Row-crop watersheds with CRP/pasture in 
this study showed greater reductions in sediment loss than the 
CRP lands in Illinois. Within a watershed, CRP/pasture lands 
were located between the crop and forest areas and this could 
have improved sediment reduction in runoff. Many authors 
have shown the merits of a naturally vegetated riparian zone in 
improving water quality (GILLIAM, 1994; LOWRANCE et 
al., 1985).

Control of fallow period and bare ground soil loss was 
important to reduce NPSP from row-crop watersheds 
(GHIDEY and ALBERTS, 1998; UDAWATTA et al., 2004). 

Until crops establish a good ground cover, soils are susceptible 
to raindrop impact and erosion compared to the pasture areas. 
Studying soil erosion on corn, wheat and meadow watersheds, 
EDWARDS and OWENS (1991) observed that 92% of the soil 
loss occurred in corn fields, 8% in wheat fields and no erosion 
in grass-meadow fields. It is unlikely that row-crop watersheds 
reduce soil and nutrients losses in runoff during the fallow 
period compared to the cropping period (UDAWATTA et al., 
2004). A comparison of soil losses in 1999 from RC-GFS and 
CRP/pasture versus row-crop watersheds proves that cool season 
grasses that cover the soil reduce soil loss early in the season and 
plant material and roots enhance settling of sediment. Results 
indicate that CRP/pasture land within a row-crop watershed 
improves water quality compared to a watershed with no CRP/
pasture. The expected reduction in sediment loads through the 
conversion depends on time, watershed size, landuse, channel 
morphology and precipitation characteristics.

Large runoff events were responsible for removing 
substantial amounts of sediment and nutrients from row-crop 
watersheds (LAL, 1976; MORGAN et al., 1986; QUINTON 
et al., 2001; ROBINSON et al., 1996; UDAWATTA et al., 
2004). In this study, the three largest runoff events accounted 
for approximately half of the total erosion. In a 28-yr study in 
Coshocton, Ohio, with more than 4,000 rainfall events, more 
than 66% of the soil loss occurred in large five events (EDWARDS 
and OWENS, 1991). However, erosion producing large events 
accounted for differing amounts of the total erosion among 
watersheds within a given land use. For example, during the 
largest two and three erosional events, watersheds 301 and 300 
lost 39% to 53% and 47% to 63%, respectively of the total soil 
eroded. Differences in erosion among watersheds within the 
same management demonstrate the importance of large storms 
on total erosion and long-term evaluation to determine best 
management practices. On the other hand, smaller events that 
occur more frequently may account for a greater proportion of 
total nutrient loss than infrequent large events (QUINTON et 
al., 2001; UDAWATTA et al., 2004). These require less energy 
to detach soil particles (QUINTON et al., 2001). In contrast, 
large events have more energy to remove nutrient-rich surface 
as well as nutrient-poor subsurface soils. In order to control 
NPSP in runoff, nutrient and sediment losses from all events 
need to be reduced.

5. CONCLUSIONS

Grass filter strips, CRP/pasture and riparian buffers 
reduced runoff volume (66%, 54% and 73%, respectively) and 
sediment loss (42%, 66% and 72%, respectively) from row-
crop agriculture. Results indicate that varying proportions of 
forest, pasture and row-crop cover structure affect both runoff 
and sediment loss in a catchment with typical Midwestern U.S. 
corn-soybean rotation. Year to year variation in precipitation 
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significantly influenced runoff volume and sediment loss 
irrespective of landuse. The smallest runoff and sediment losses 
were from forest watersheds and the largest losses were from 
row-crop watersheds. The watershed with a grass filter strip 
and CRP/pasture watersheds had intermediate runoff and 
sediment losses. Although permanent vegetation reduced NPSP 
from row-crop agriculture, reduction amounts varied among 
watersheds within a landuse. This shows the importance of 
specific management strategies for individual watersheds that 
depend on location of crops and permanent vegetation within 
a watershed.

Results of this study suggest that more emphasis should 
be placed on management strategies that minimize runoff and 
sediment losses from row-crop watersheds, as over 87% and 
90% of the runoff events removed more sediment from row-crop 
watersheds than from the pasture and forest watersheds, 
respectively. Only 10% of the erosion events were controlled 
by water quality improvement measures such as minimum 
tillage, forested riparian buffer strips and grass filter strips on 
the row-crop watersheds. The grass filter strip on a row-crop 
watershed effectively reduced NPSP in years with normal 
precipitation but failed in years with above normal precipitation. 
This finding indicates that establishment of grass filter strips 
along streams would reduce sediment loss by approximately 
72% in years with normal precipitation. Increasing the width 
beyond 3-4 m may reduce sediment loss from infrequent large 
runoff events. An evaluation of erosion from CRP/pasture 
watersheds indicates that approximately 55% pasture cover 
within each row-crop watershed would lower the sediment 
loss by 55%, especially when runoff water goes through the 
pasture area and the forest buffer before it leaves the watershed. 
Furthermore, these practices are financially attractive to land-
owners and farmers because the Conservation Reserve Program 
subsidizes lost income for agricultural land planted in riparian 
and CRP/pasture. These practices would also reduce sediment 
discharges significantly from agricultural watersheds within 
the Long Branch Watershed and thereby reduce siltation of the 
lake and the associated cleaning costs while providing other 
invaluable environmental benefits.
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