Abstracts
Résumé
Le bassin versant de la rivière Saint-François, situé sur la rive sud (rive droite) du fleuve Saint-Laurent (Québec, Canada), couvre une superficie d’environ 10 000 km2. Dans le but de déceler les facteurs climatiques qui influencent les précipitations dans ce bassin versant, nous avons analysé la succession des périodes pluviométriques sèches et humides par la technique des moyennes glissantes sur cinq ans, d’une part, et la relation entre quatre indices climatiques (oscillation arctique, oscillation australe, oscillation nord-atlantique et la température des eaux océaniques de surface) et ces périodes pluviométriques au moyen de l’analyse des corrélations canoniques, d’autre part. Nous avons analysé les données pluviométriques mesurées à trois stations représentatives des régimes pluviométriques du bassin versant : Sherbrooke, Disraeli et Drummondville. Ces données couvrent une période de 76 ans (1914-1990).
En ce qui concerne la variabilité interannuelle des précipitations, nous avons détecté deux types de changement. Le premier type de changement, survenu autour de 1950, concerne la répartition des précipitations à l’échelle du bassin versant (changement spatial). Avant 1950, la succession des périodes sèches et humides des précipitations n’était pas synchrone (opposition des périodes) mais elle l’est devenue après 1950. Le second type de changement a été observé autour des années 1935 et 1970. Il correspond à un changement des totaux pluviométriques au niveau des stations (changement quantitatif). Avant et après 1935 et 1970, on passe ainsi des périodes sèches aux périodes humides ou vice versa selon les stations. En tenant compte de ces trois dates, nous avons observé la succession des périodes sèches et humides suivantes : 1) Avant 1950, entre 1914 et 1935, nous avons observé une période sèche aux stations de Disraeli et de Sherbrooke mais une période humide à la station de Drummondville. Entre 1936-1950, ces périodes se sont inversées : humide à Disraeli et Sherbrooke mais sèche à Drummondville; 2) Après 1950, entre 1951 et 1970, les précipitations étaient déficitaires aux trois stations. En revanche, elles sont devenues excédentaires après 1970.
L’analyse des corrélations canoniques entre les précipitations et les indices climatiques a révélé les faits significatifs suivants : 1) Avant et après 1950, les précipitations sont positivement corrélées à l’oscillation arctique (OA), mais cette corrélation est plus faible après qu’avant 1950. Ainsi, l’augmentation des valeurs de OA entraînerait une hausse de fréquence des masses d’air en provenant du sud dans le bassin versant; 2) Lorsqu’on considère les périodes sèches et humides, OA est toujours positivement corrélée aux périodes sèches à la station de Sherbrooke.
Mots clés:
- Précipitations totales annuelles,
- oscillation arctique,
- moyennes mobiles simples,
- analyse des corrélations canoniques,
- Saint-François,
- Québec
Summary
The Saint-François River watershed, located on the south shore of the St. Lawrence River (Québec, Canada), covers an area of about 10,000 km2. To detect the climatic factors that influence precipitation in this watershed, we analyzed the succession of dry and wet pluviometric periods by a method of simple moving averages computed over five years. In addition, the relationship between four climatic indices (Arctic Oscillation, Southern Oscillation, North Atlantic Oscillation and Sea Surface Temperature) and these pluviometric periods was analyzed by means of canonical correlation analysis. We analyzed the pluviometric data measured over a 76-year period (1914-1990) at three stations representative of the watershed’s pluviometric regimes: Sherbrooke, Disraeli and Drummondville.
Two types of change in the inter-annual variability of precipitation were detected. The first type of change, occuring circa 1950, concernend the distribution of precipitation throughout the watershed, i.e. spatial change. Before 1950, the succession of dry and wet precipitation periods was asynchronous (opposition of periods), but became synchronous after 1950. The second type of change, corresponding to a change in the pluviometric totals at the stations, i.e. quantitative change, was observed circa 1935 and 1970. There was, therefore, a shift from dry to wet periods or vice versa, prior to and following 1935 and 1970, depending on the station. By accounting for these three dates, we observed the succession of the following dry periods and wet periods. First, before 1950 and between 1914 and 1935, we observed a dry period at the Disraeli and Sherbrooke stations and a wet period at the Drummondville station. Between 1936 and 1950, these periods were reversed: wet periods at Disraeli and Sherbrooke but a dry period at Drummondville. Second, after 1950 and between 1951 and 1970, there was a precipitation deficit at all three stations, which, however, moved into a surplus phase after 1970.
The canonical correlation analysis of precipitation levels and the climate indices revealed the following significant facts: 1) prior to and following 1950, precipitation was positively correlated to the Arctic Oscillation (AO) indices, but this correlation was weaker after 1950 than before; and 2) with respect to the wet and dry periods, the AO index is still positively correlated with the dry periods at the Sherbrooke station.
Key words:
- annual precipitations,
- arctic oscillation,
- moving average,
- canonical correlation analysis,
- St-François,
- Québec
Appendices
Références bibliographiques
- AFIFI A.A. et V. CLARK (1996). Computer-aided multivariate analysis. 3rd edition. Chapman and Hall (Éditeurs), New York, 505p.
- AMBAUM M.H.P., B.J. HOSKINS et D.B. STEPHENSON (2001). Arctic oscillation or north atlantic oscillation? J. Clim., 15, 3495-3507.
- ANCTIL F. et P. COULIBALY (2004). Wavelet analysis of the interannual variability in southern Québec streamflow. J. Clim., 17, 163-73.
- ASSANI A.A. (1999). Analyse de la variabilité temporelle des précipitations (1916-1996) à Lubumbashi (Congo-Kinshasa) en relation avec certains indicateurs de la circulation atmosphérique (oscillation australe) et océanique (El Nino/La Nina). Sécheresse 10, 245-252.
- BALDWIN M.P. et T.J. DUNKERTON (1999). Propagation of the Arctic oscillation from the stratopshere to the troposphere. J. Geophys. Res. 104, 30937-30946.
- BERRI G.J. et G.I. BERTOSA (2004). The influence of tropical Atlantic and Pacific oceans on precipitations variability over southern central South America on seasonal time scales. Intern.J. Climatol., 24, 415-435.
- BRADBURY J.A., S.L. DINGMAN et B.D. KEIM (2002). New England drought and relations with large scale atmospheric circulation patterns. J. Amer. Water Res. Ass., 38, 1287-1299.
- BROWN R.D. et B.E. GOODISON (1996). Interannual variability in reconstructed Canadian snow cover 1915‑1992. J. Clim., 9, 1299-1318.
- CADET D. et R. GARNIER (1988). L’oscillation australe et ses relations avec les anomalies climatiques globales. La Météorologie, 21, 4-18.
- CHEND et Y. CHEN (2003). Association between winter temperature in China and upper air circulation over East Asia revealed by canonical correlation analysis. Global Plan., 37, 315-325.
- CHEN H.L. et A.R. RAO (2002). Testing hydrologic time series for stationarity. J. Hydrol. Eng., 7, 129-36.
- COULIBALY P. et D.H. BURN (2004). Walevet analysis of variability in annual Canadian streamflows. Water Res., 40, 1-14.
- COULIBALY P. et D.H. BURN (2005). Spatial and temporal variability of canadian seasonal streamflows. J. Clim., 18, 191-210.
- COULIBALY P. F. ANCTIL, P. RASMUSSEN et B. BOBÉE (2000). A recurrent neural netwoks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrol. Process. 14, 2755-77.
- DÉRY S.J., M. STIEGLITZ, E.C. McKENNA et E.F. WOOD (2005). Characteristics and trends of river discharge into Hudson, James, and Ungava Bays, 1964-2000. J. Clim., 18, 2540-2557.
- DÉRY S.J. et E.F. WOOD (2004). Teleconnection between the arctic oscillation and hudson bay river discharge. Geophys. Res. Lett., 31, LI18205, doi : 1029/2004GL020729.
- DÉRY S.J. et E.F. WOOD (2005). Decreasing river in northern Canada. Geophys. Res. Lett., 32, L10401, doi: 10.1029/2005GL022845.
- DESER C. (2000). On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779-782.
- DÜNKELOH A. et J. JACOBEIT (2003). Circulation dynamics of Mediterranean precipitation variability 1948-98. Intern. J. Climatol., 23, 1843-1866.
- ENVIRONNEMENT CANADA (2003). Adjusted historical canadian climate data (AHCCD). Climate research branch, meteorological service, Canada. (http://www.cccma.bc.ec.gc.ca/ahccd/).
- GROISMAN P.Y. et D.R. EASTERLING (1994). Variability and trends of total precipitation and snowfall over United States and Canada. J. Clim., 7, 184-205.
- HAYLOCK M.R. et C.M. GOODESS (2004). Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Intern. J. Climatol., 24, 759-776
- HIGGINS R.W., A. LEETMAA, Y. XUE et A. BARNSTON (2000). Dominant factors influencing the seasonal predictability of U.S precipitation and surface air temperature. J. Clim., 13, 3994-4017.
- HIGUSHI K., C.W. YUEN et A. SHABBAR (2000). Ice storm’98 in southcentral Canada and northeasthern Unites States: A climatological perspective. Theor. Appl. Climatol., 66, 61-79.
- JAIN S., M. HOERLING et J. EISCHEID (2005). Decreasing reliability and increasing synchroneity of western north american streamflow. J. Clim., 18, 613-618.
- JONES N.K. (2004). An analysis of the Massawippi floods of 1982 and 1994. Can. Water Res. J., 29, 73-84.
- KINGSTON D.G., D.M. LAWLER et G.R. McGREGOR (2006). Linkage between atmospheric circulation, climate and streamflow in the northern Atlantic: research prospects. Progr. Phys. Geogr., 30, 143-174.
- LABAT D. (2005). Recent advances in wavelet analyses: part I. A review of concepts. J. Hydrol., 314, 275-288.
- LOLIS C.J., A. BARTZOKAS et B.D. KATSOULIS (2004). Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter. Intern. J. Climatol., 24, 1803-1816.
- MEKIS E. et W. HOGG (1999). Rehabilitation and analysis of canadian daily precipitation time series. Atmosphere-Ocean, 37, 53-85.
- PROULX H., G. JACQUES, A.M. LAMOTHE et J. LITYNSKI (1987). Climatologie du Québec méridional. Environnement Québec, Québec, rapport MP-65.
- RIGOR I.G., J.M. WALLACE et R.L. COLONY (2002). Response of sea ice to the Arctic oscillation. J. Clim., 15, 2648-2663.
- ROGERS J.C. (1984). The association between the north atlantic oscillation and the southern oscillation in the northern hemisphere. Month. Weather Rev., 112, 1999‑2015.
- ROPELEWSKI, C.F. et M.S. HALPERT (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev., 115, 1606-1626.
- SAINT-LAURENT D., COUTURE C. et E. MCNEIL (2001). Spatio-temporal analysis of floods of the Saint-François drainage basin, Québec, Canada. Environments, 29, 74‑90.
- SHABBAR A. et B. BONSAL (2004). Associations between low frequency variability modes and winter temperature extremes in Canada. Atmopshere-Ocean, 42, 127-140.
- SHABBAR A., B. BONSAL et M. KHANDEKAR (1997). Canadian precipitation patterns associated with the Southern Oscillation. J. Clim., 10, 3016-27.
- SHABBAR A., K. HIGUCHI, W. SKINNER et J.L. KNOX (1997). The association between the BWA index and winter surface temperature variability over eastern Canada and west Greenland. Intern. J. Clim., 17, 1195-1210.
- SHABBAR A. et W. SKINNER (2004). Summer drought patterns in Canada and the relationship to global sea surface temperatures. J. Clim., 17, 2866-2880.
- SHERIDAN S.C. (2002). The redevelopment of a weather-type classification scheme for North America. Inter. J. Clim., 25, 51-68.
- SHERIDAN S.C. (2003). North America weather-type frequency and teleconnection indices. Intern. J. Clim., 23, 27-45.
- SIEW-YAN-YU T.O., J. ROUSSELLE, G. JACQUES et V.T.V. NGUYEN (1998). Régionalisation du régime des précipitations dans la région des Bois-Francs et de l’Estrie par l’analyse en composantes principales. Can. J. Civ. Eng., 25, 105-1058.
- STONE, D.A, WEAVER A.J. et F. ZWIERS (2000). Trends in Canadian precipitation intensity. Atmosphere-Ocean, 38, 321-347
- THOMPSON D.W.J. et J.M WALLACE (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297-1300.
- THOMPSON D.W.J. et J.M. WALLACE (2001). Regional climate impacts of the northern hemisphere annular mode. Science, 293, 85-89.
- WALLACE J.M. (2000). North atlantic oscillation/annular mode: two paradigms-one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791-805.
- WALLACE J.M. et D.W.J. THOMPSON (2002). The Pacific center of action of the northern hemisphere annular mode: real or artifact? J. Clim., 15, 1987-1991
- WANNER H. (1999). Le balancier de l’Atlantique nord. La Recherche, 321, 72-73.