Abstracts
Résumé
Les cellules souches neurales (CSN) sont des cellules multipotentes, capables de s’autorenouveler et de produire différentes cellules du système nerveux : neurones, astrocytes et oligodendrocytes. La confirmation que la neurogenèse se produit dans des régions discrètes du cerveau des mammifères adultes, l’hippocampe et la région sous-ventriculaire, et que des CSN résident dans le système nerveux central adulte a remis en cause le dogme selon lequel nous naissons avec un nombre limité de neurones, sans possibilité pour le cerveau de se régénérer. Des études récentes ont montré que la neurogenèse est stimulée dans les maladies neurologiques, les accidents vasculaires cérébraux et les traumatismes crâniens, et que des cellules neuronales sont produites aux sites de lésions, où elles remplacent en partie les neurones dégénérés. Dans ces pathologies, la stimulation de la neurogenèse pourrait participer à des phénomènes de neuro-adaptation, et les nouvelles cellules neuronales présentes aux sites de lésions contribueraient à des tentatives de régénération. Cet article résume les travaux étudiant la neurogenèse au cours des pathologies du système nerveux adulte.
Summary
Neural stem cells (NSCs) are the self-renewing, multipotent cells that generate neurons, astrocytes, and oligodendrocytes in the nervous system. Contrary to the long-held dogma, neurogenesis occurs in discrete areas of the adult brain, the hippocampus and the subventricular zone, and NSCs reside in the adult central nervous system. Recent studies have shown that neurogenesis is increased in the diseased brains, after strokes and traumatic brain injuries, and that new neuronal cells are generated at the sites of injury, where they replace some of the degenerated nerve cells. Thus, the central nervous system has the capacity to regenerate after injury. The contribution and function of the increased neurogenesis in the pathologies of the nervous system remain to be understood. The increased hippocampal neurogenesis may play a role in neuroadaptation, such as in memory troubles and depression, associated with these pathologies. The increased neurogenesis at the sites of injury may represent an attempt by the central nervous system to regenerate itself after injury. Newly generated neuronal cells at the sites of injury originate from the subventricular zone. Hence, strategies that would promote neurogenesis in the subventricular zone may promote neuronal repair after injury of the nervous system. In this manuscript, we will review the studies on neurogenesis in the pathologies of the nervous system.
Appendices
Références
- 1. Taupin P, Gage FH. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 2002 ; 69 : 745-9.
- 2. Taupin P. Contrôle de la persistance des cellules souches neurales des mammifères. Med Sci (Paris) 2004 ; 20 : 748-9.
- 3. Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2003 ; 100 : 7925-30.
- 4. Lie DC, Dziewczapolski G, Willhoite AR, et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002 ; 22 : 6639-49.
- 5. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2004 ; 101 : 10177-82.
- 6. Gage FH. Mammalian neural stem cells. Science 2000 ; 287 : 1433-8.
- 7. Mezey E. Commentary on bone marrow stem cells and openmindedness. Stem Cells Dev 2004 ; 13 : 147-52.
- 8. Kaneko Y, Sakakibara S, Imai T, et al. Musashi 1 : an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 2000 ; 22 : 139-53.
- 9. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 2004 ; 101 : 343-7.
- 10. Feng R, Rampon C, Tang YP, et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 2001 ; 32 : 911-26 et 2002 ; 33 : 313 (erratum).
- 11. Haughey NJ, Nath A, Chan SL, et al. Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 2002 ; 6 : 1509-24.
- 12. Jin K, Galvan V, Xie L, et al. Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw, Ind) mice. Proc Natl Acad Sci USA 2004 ; 101 : 13363-7.
- 13. Curtis MA, Penney EB, Pearson AG, et al. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci USA 2003 ; 100 : 9023-7.
- 14. Lazic SE, Grote H, Armstrong RJ, et al. Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. Neuroreport 2004 ; 15 : 811-3.
- 15. Tattersfield AS, Croon RJ, Liu YW, et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neuroscience 2004 ; 127 : 319-32.
- 16. Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997 ; 17 : 3727-38.
- 17. Parent JM, Tada E, Fike JR, Lowenstein DH. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 1999 ; 19 : 4508-19.
- 18. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998 ; 18 : 7768-78.
- 19. Yagita Y, Kitagawa K, Ohtsuki T, Takasawa Ki. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 2001 ; 32 : 1890-6.
- 20. Nakatomi H, Kuriu T, Okabe S. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002 ; 110 : 429-41.
- 21. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002 ; 8 : 963-70.
- 22. Jin K, Sun Y, Xie L, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 2003 ; 24 : 171-89.
- 23. Dash PK, Mach SA, Moore AN. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res 2001 ; 63 : 313-9.
- 24. Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 2001 ; 66 : 317-26.
- 25. Goings GE, Sahni V, Szele FG. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res 2004 ; 996 : 213-26.
- 26. Braun H, Schafer K, Hollt V. Beta III tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J Neurotrauma 2002 ; 19 : 975-83.
- 27. Gould E, Tanapat P. Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 1997 ; 80 : 427-36.
- 28. Ekdahl CT, Mohapel P, Elmer E, Lindvall O. Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus. Eur J Neurosci 2001 ; 14 : 937-45.
- 29. Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain : evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000 ; 97 : 12846-51 et 2001 ; 98 : 777 (erratum).
- 30. Macklis JD. Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis. J Neurosci 1993 ; 13 : 3848-63.