Abstracts
Résumé
Longtemps considérée comme une maladie unique, l'amylose est aujourd'hui reconnue comme la marque histologique d'un ensemble de maladies, les amyloses. L'amylose est la voie finale commune, chez l'homme et dans de nombreuses espèces animales, de l'agrégation pathologique de plus de vingt protéines appartenant à des familles dénuées de relation fonctionnelle ou structurale. Les mécanismes de formation de ces agrégats commencent à être mieux connus. L'étape centrale, que l'on peut artificiellement reproduire in vitro, est un changement de conformation d'une protéine native en une protéine apte à l'auto-agrégation, sous une forme essentiellement formée de feuillets β. Le traitement actuel des amyloses, qui consiste à réduire la disponibilité en protéine amyloïde, n'est pas pleinement satisfaisant. La reconnaissance progressive des différentes étapes de ce phénomène pathologique a conduit à la conception de cibles thérapeutiques nouvelles : stabilisation de la protéine native, désagrégation des structures déjà β-plissées ou, encore, inhibition des liaisons avec certains composants du tissu conjonctif. Différentes approches, pharmacologiques et immunologiques, sont à l'étude sur des systèmes cellulaires et des modèles animaux, et certaines molécules sont parvenues au stade de l'essai clinique chez l'homme.
Summary
Amyloidosis bears many characteristics of orphan diseases. Its diagnosis is difficult and often delayed. The main reasons thereof are its quite various clinical presentation: amyloidosis behaves as a new great masquerader, and the need to get a tissue sample to submit to specific dyes. Although we have been able for a long time to recognize amyloid, its intimate nature has remained quite completely enigmatic until recently. In fact, major advances in this way have appeared only in the last decade and it is now possible to consider the mechanisms of amyloidosis as a multistep phenomenon. Amyloidosis is no more thought only as a « storage disease » of the extracellular space. This archaic viewpoint has shifted to the emerging paradigm of misfolded protein disorders. Amyloid proteins thus appear as a subgroup of misfolded proteins, where misfolding leads to subsequent aggregation. This aggregation may be a generic property of polypeptide chains possibly linked to their common peptide backbone that does not depend on specific amino acid sequences. And, in fact, many proteins can in vitro form amyloid-like aggregates, while in vivo, only 20 amyloid proteins have been so far identified. Although misfolding and aggregation are quite well studied in vitro, the last step of amyloid deposition, i.e. anchorage to the extracellular matrix, can not be so easily approached. Proteoglycans and serum amyloid P component have nevertheless been identified as key elements involved in extracellular deposition of amyloid proteins. These advances have opened new avenues in the therapeutic of amyloid disorders. Current treatment consists of support or replacement of impaired organ function and measures to reduce the production of amyloidogenic precursor proteins. Potential novel therapeutic strategies include stabilisation of the native fold of precursor proteins with targeted small molecules, reversion of misfolded proteins to their native state with « beta-sheet breakers », inhibition of amyloid fibril propagation and enhancement of amyloid clearance either through immunotherapy or by reducing the stability of deposits through depletion of serum amyloid P component, and breaking the anchorage to the extracellular matrix with glycosaminoglycan analogs.
Appendices
Références
- 1. Grateau G, Benson MD, Delpech M. Les amyloses. Paris : Flammarion Médecine-Sciences, 2000 : 580 p.
- 2. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med 1997 ; 337 : 898-909.
- 3. Grateau G. Amyloses. In : Kahn MF, Peltier O, Meyer O, Piette JC, eds. Les maladies systémiques. Paris : Flammarion Médecine-Sciences, 2000 : 1279-308.
- 4. Carter DB, Chou KC. A model for structure-dependent binding of Congo red to Alzheimer beta-amyloid fibrils. Neurobiol Aging 1998 ; 19: 37-40.
- 5. Kaplan B, Shtrasburg S, Pras M. Micropurification techniques in the analysis of amyloid proteins. J Clin Pathol 2003 ; 56 : 86-90.
- 6. Baltz ML, Caspi D, Evans DJ, et al. Circulating serum amyloid P component is the precursor of amyloid P component in tissue amyloid deposits. Clin Exp Immunol 1986 ; 66 : 691-700.
- 7. Hawkins PN. Serum amyloid P component scintigraphy for diagnosis and monitoring amyloidosis. Curr Opin Nephrol Hypertens 2002 ; 11 : 649-55.
- 8. Sipe JD, Ed. Amyloid proteins: the beta sheet conformation and disease. Weinheim: Wiley-VCH, 2005 (sous presse).
- 9. Canet D, Sunde M, Last AM, et al. Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry 1999 ; 38 : 6419-27.
- 10. Hamilton JA, Benson MD. Transthyretin: A review from a structural perspective. Cell Mol Life Sci 2001 ; 58 : 1-31.
- 11. Hofrichter J, Ross PD, Eaton WA. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci USA 1974 ; 71 : 4864-8.
- 12. O'Nuallain B, Williams AD, Westermark P, Wetzel R. Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 2004 ; 279 : 17490-9.
- 13. Hurshman AR, White JT, Powers ET, Kelly JW. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 2004 ; 43 : 7365-81.
- 14. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002 ; 27 : 527-33.
- 15. Niraula TN, Konno T, Li H, et al. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci USA 2004 ; 101 : 4089-93.
- 16. Korenaga T, Fu X, Xing Y, et al. Tissue distribution, biochemical properties, and transmission of mouse Type A AApoAII amyloid fibrils. Am J Pathol 2004 ; 164 : 1597-606.
- 17. Lundmark K, Westermark GT, Nystrom S, et al. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci USA 2002 ; 99 : 6979-84.
- 18. Mudher A, Lovestone S. Alzheimer's disease : do tauists and baptists finally shake hands? Trends Neurosci 2002 ; 25 : 22-6.
- 19. Lee HG, Casadesus G, Zhu X, et al. Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. Ann NY Acad Sci 2004 ; 1019 : 1-4.
- 20. Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003 ; 300 : 486-9.
- 21. Kayed R, Sokolov Y, Edmonds B, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004 ; 279 : 46363-6.
- 22. Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 2004 ; 94 : 1008-10.
- 23. Skinner M, Sanchorawala V, Seldin DC, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Ann Intern Med 2004 ; 140 : 85-93.
- 24. Stangou AJ, Hawkins PN. Liver transplantation in transthyretin-related familial amyloid polyneuropathy. Curr Opin Neurol 2004 ; 17 : 615-20.
- 25. Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW. Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem 2004 ; 47 : 355-74.
- 26. Gertz MA, Lacy MQ, Dispenzieri A, et al. A multicenter phase II trial of 4`-iodo-4`deoxydoxorubicin (IDOX) in primary amyloidosis (AL). Amyloid 2002 ; 9 : 24-30.
- 27. Cardoso I, Merlini G, Saraiva MJ. 4`-iodo-4`-deoxydoxorubicin and tetracyclines disrupt transthyretin amyloid fibrils in vitro producing noncytotoxic species: screening for TTR fibril disrupters. FASEB J 2003 ; 17 : 803-9.
- 28. Soto C, Kascsak RJ, Saborio GP, et al. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 2000 ; 355 : 192-7.
- 29. Gestwicki JE, Crabtree GR, Graef IA. Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 2004 ; 306 : 865-9.
- 30. Kisilevsky R, Lemieux LJ, Fraser PE, et al. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat Med 1995 ; 1 : 143-8.
- 31. Kisilevsky R, Szarek WA, Ancsin JB, et al. Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose: implications for the treatment of various amyloidoses. Am J Pathol 2004 ; 164 : 2127-37.
- 32. Pepys MB, Herbert J, Hutchinson WL. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 2002 ; 417 : 254-9.
- 33. Dumoulin M, Dobson CM. Probing the origins, diagnosis and treatment of amyloid diseases using antibodies. Biochimie 2004 ; 86 : 589-600.
- 34. O'Nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 2002 ; 99 : 1485-90.
- 35. Hrncic R, Wall J, Wolfenbarger DA, et al. Antibody-mediated resolution of light chain-associated amyloid deposits. Am J Pathol 2000 ; 157 : 1239-46.