Abstracts
Résumé
Depuis quelques années, de nouvelles molécules de la famille des thiazolidinediones (TZD) sont utilisées dans les traitements du diabète de type II. Les TZD améliorent également certaines maladies secondaires fréquemment associées à la résistance à l’insuline comme le syndrome des ovaires polykystiques chez la femme. L’action de ces molécules passe par leur fixation sur le PPARγ (peroxysome proliferator-activated receptorγ), récepteur nucléaire largement présent dans le tissu adipeux, capable de fixer les acides gras à longue chaîne ainsi que leurs dérivés comme certaines prostaglandines. On sait depuis peu que le PPARγ est aussi fortement exprimé dans l’ovaire, ce qui soulève la question du mécanisme d’action des TZD dans le traitement de ces maladies ovariennes : indirect, via une amélioration générale de la sensibilité à l’insuline, ou bien direct ? PPARγ joue également un rôle dans la survie embryonnaire et foetale à travers sa fonction dans la maturation du placenta. Ces résultats récents suggèrent donc une influence importante des ligands naturels de PPARγ, comme les acides gras à longue chaîne et leurs dérivés, sur la fertilité chez la femme, et leurs implications, en général, dans les interactions entre métabolisme énergétique et reproduction.
Summary
Synthetic molecules of the glitazone family are currently used in the treatment of type II diabetes. Glitazones also improve secondary pathologies that are frequently associated with insulin resistance such as the polycystic ovary syndrome (PCOS). Glitazones bind to the peroxysome proliferator-activated receptor gamma (PPARγ), a nuclear receptor which is highly expressed in adipose tissue. PPARγ also binds natural ligands such as long-chain fatty acids. Recently, several groups have shown that PPARγ is also highly expressed in ovarian granulosa cells, and that glitazones are able to modulate in vitro granulosa cell proliferation and steroïdogenesis in several species. These recent data raise new questions concerning the underlying mechanism of the effect of glitazones on PCOS. One might hypothesize, as for other « glucophage » molecules such as metformin, that it is the general improvement of glucose metabolism and insulin sensitivity by glitazones which indirectly, and via an unknown mechanism, ameliorates ovarian functionality. The data discussed here suggest now an alternative possibility, that glitazones act directly at the ovarian level. Moreover, PPARγ also seems to play a key role in the maturation of the placenta. In particular, inactivation of PPARγ in mice is lethal, since the foetus is unable to develop because of alterations of placental maturation. In women, the activation of PPARγ in placenta leads to an increase of placental hormone secretion. Overall, these results raise some questions about the role of natural ligands of PPARγ such as long chain fatty acids on female fertility and the interactions between energy metabolism and reproduction in general.
Appendices
Références
- 1. Issemann, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990 ; 347 : 645-50.
- 2. Debril MB, Renaud JP, Fajas L, Auwerx J. The pleiotropic functions of peroxisome proliferator-activated receptor gamma. J Mol Med 2001 ; 79 : 30-47.
- 3. Komar CM, Braissant O, Wahli W, Curry TE Jr. Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology 2001 ; 142 : 4831-8.
- 4. Froment P, Fabre S, Dupont J, et al. Expression and functional role of peroxisome proliferator-activated receptor-gamma in ovarian folliculogenesis in the sheep. Biol Reprod 2003 ; 69 : 1665-74.
- 5. Mouihate A, Boisse L, Pittman QJ. A novel antipyretic action of 15-deoxy-Delta12,14-prostaglandin J2 in the rat brain. J Neurosci 2004 ; 24 : 1312-8.
- 6. Heaney AP, Fernando M, Melmed S. PPAR-gamma receptor ligands : novel therapy for pituitary adenomas. J Clin Invest 2003 ; 111 : 1381-8.
- 7. Gasic S, Bodenburg Y, Nagamani M, et al. Troglitazone inhibits progesterone production in porcine granulosa cells. Endocrinology 1998 ; 139 : 4962-6.
- 8. Lohrke B, Viergutz T, Shahi SK, et al. Detection and functional characterisation of the transcription factor peroxisome proliferator-activated receptor gamma in lutein cells. J Endocrinol 1998 ; 159 : 429-39.
- 9. Schoppee PD, Garmey JC, Veldhuis JD. Putative activation of the peroxisome proliferator-activated receptor gamma impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells. Biol Reprod 2002 ; 66 : 190-8.
- 10. Mu YM, Yanase T, Nishi Y, et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun 2000 ; 271 : 710-3.
- 11. Viergutz T, Loehrke B, Poehland R, et al. Relationship between different stages of the corpus luteum and the expression of the peroxisome proliferator-activated receptor gamma protein in bovine large lutein cells. J Reprod Fertil 2000 ; 118 : 153-61.
- 12. Cui Y, Miyoshi K, Claudio E, et al. Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem 2002 ; 277 : 17830-5.
- 13. Dunaif A. Insulin resistance and the polycystic ovary syndrome : mechanism and implications for pathogenesis. Endocrinol Rev 1997 ; 18 : 774-800.
- 14. Dunaif A, Scott D, Finegood D, et al. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996 ; 81 : 3299-306.
- 15. Iuorno MJ, Nestler JE. Insulin-lowering drugs in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001 ; 28 : 153-64.
- 16. Seli E, Duleba AJ. Treatment of PCOS with metformin and other insulin-sensitizing agents. Curr Diab Rep 2004 ; 4 : 69-75.
- 17. La Marca A, Egbe TO, Morgante G, et al. Metformin treatment reduces ovarian cytochrome P-450c17alpha response to human chorionic gonadotrophin in women with insulin resistance-related polycystic ovary syndrome. Hum Reprod 2000 ;15 : 21-3.
- 18. Nestler JE, Jakubowicz DJ, Reamer P, et al. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med 1999 ; 340 : 1314-20.
- 19. Duran-Sandoval D, Thomas AC, Bailleul B, et al. Pharmacology of PPARalpha, PPARgamma and dual PPARalpha/gamma agonists in clinical development. Med Sci (Paris) 2003 ; 19 : 819-25.
- 20. Larsen TM, Toubro S, Astrup A. PPARgamma agonists in the treatment of type II diabetes : is increased fatness commensurate with long-term efficacy ? Int J Obes Relat Metab Disord 2003 ; 27 : 147-61.
- 21. Bjorntorp P. The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 1996 ; 20 : 291-302.
- 22. Brettenthaler N, De Geyter C, Huber PR, Keller U. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004 ; 89 : 3835-40.
- 23. Gurnell M, Savage DB, Chatterjee VK, O’Rahilly S. The metabolic syndrome : peroxisome proliferator-activated receptor gamma and its therapeutic modulation. J Clin Endocrinol Metab 2003 ; 88 : 2412-21.
- 24. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000 ; 26 : 76-80.
- 25. Hara M, Alcoser SY, Qaadir A, et al. Insulin resistance is attenuated in women with polycystic ovary syndrome with the Pro(12)Ala polymorphism in the PPARgamma gene. J Clin Endocrinol Metab 2002 ; 87 : 772-5.
- 26. Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999 ; 4 : 585-95.
- 27. Mohan M, Ryder S, Claypool PL, et al. Analysis of gene expression in the bovine blastocyst produced in vitro using suppression-subtractive hybridization. Biol Reprod 2002 ; 67 : 447-53.
- 28. Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999 ; 4 : 597-609.
- 29. Wendling O, Chambon P, Mark M. Retinoid X receptors are essential for early mouse development and placentogenesis. Proc Natl Acad Sci USA 1999 ; 96 : 547-51.
- 30. Li Q, Cheon YP, Kannan A, et al. A novel pathway involving progesterone receptor, 12/15-lipoxygenase-derived eicosanoids, and peroxisome proliferator-activated receptor gamma regulates implantation in mice. J Biol Chem 2004 ; 279 : 11570-81.
- 31. Asami-Miyagishi R, Iseki S, Usui M, et al. Expression and function of PPARgamma in rat placental development. Biochem Biophys Res Commun 2004 ; 315 : 497-501.
- 32. Tarrade A, Schoonjans K, Guibourdenche J, et al. PPAR gamma/RXR alpha heterodimers are involved in human CG beta synthesis and human trophoblast differentiation. Endocrinology 2001 ; 142 : 4504-14.
- 33. Nogueiras R, Barreiro ML, Caminos JE, et al. Novel expression of resistin in rat testis : functional role and regulation by nutritional status and hormonal factors. J Cell Sci 2004 ; 117 : 3247-57.
- 34. Pritts EA, Zhao D, Ricke E, et al. PPAR-gamma decreases endometrial stromal cell transcription and translation of RANTES in vitro. J Clin Endocrinol Metab 2002 ; 87 : 1841-4.
- 35. Wanichkul T, Han S, Huang RP, Sidell N. Cytokine regulation by peroxisome proliferator-activated receptor gamma in human endometrial cells. Fertil Steril 2003 ; 79 (suppl 1) : 763-9.
- 36. Dufour JM, Vo MN, Bhattacharya N, et al. Peroxisome proliferators disrupt retinoic acid receptor alpha signaling in the testis. Biol Reprod 2003 ; 68 : 1215-24.
- 37. Kobayashi T, Niimi S, Kawanishi T, et al. Changes in peroxisome proliferator-activated receptor gamma-regulated gene expression and inhibin/activin-follistatin system gene expression in rat testis after an administration of di-n-butyl phthalate. Toxicol Lett 2003 ; 138 : 215-25.