Abstracts
Résumé
En 2002, il était prévu que les anticorps humanisés deviendraient une classe majeure de médicaments, notamment en cancérologie. Aujourd’hui, huit d’entre eux sont utilisés en clinique et plus de quarante font l’objet d’essais cliniques. Si leurs mécanismes d’action, multiples, sont difficiles à préciser pour un anticorps donné, les observations réalisées chez les milliers de patients déjà traités démontrent clairement leur intérêt clinique. Ils sont cependant d’utilisation délicate, en particulier lorsqu’ils modulent l’activité d’effecteurs de la réponse immune. Au cours des prochaines années, de nouveaux progrès devront être faits pour sélectionner les cibles pertinentes de ces anticorps, diminuer leur immunogénicité et réduire leur coût.
Summary
Since 1997, nine humanized antibodies received the approval of the FDA to be used as drugs for the treatment of various diseases including transplant rejections, metastatic breast and colon cancers, leukaemia, non-Hodgkin lymphomas, allergic conditions or multiple sclerosis. This review describes techniques used to engineer these antibodies and presents the recent evolutions of these techniques : SDRs grafting or « abbreviated » CDRs grafting. Based on the illustrative examples of several antibodies, Mylotarg®, Herceptin® or Xolair®, the therapeutic effectiveness of humanized antibodies are underlined and, with the example of Tysabri®, the sometimes dramatic adverse effects associated with their clinical use is stressed. In a second part, this review presents some future and realistic avenues to improve the effectiveness of the humanized antibodies, to decrease their immunogenicity and to reduce their cost.
Appendices
Références
- 1. Ehrlich P Herta CA, Shigas K. Über einige Verwendungen der Naphtochinosuflsaure. Z Physiol Chem 1904 ; 61 : 379-92.
- 2. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975 ; 256 : 495-7.
- 3. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 1982 ; 306 : 517-22.
- 4. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods 2005 ; 36 : 3-10.
- 5. Qu Z, Griffiths GL, Wegener WA, et al. Development of humanized antibodies as cancer therapeutics. Methods 2005 ; 36 : 84-95.
- 6. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules : mouse antigen-binding domains with human constant region domains. Proc Natl Acad SciUSA 1984 ; 81 : 6851-5.
- 7. Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986 ; 321 : 522-5.
- 8. Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies : from anti-Tac to Zenapax. Methods 2005 ; 36 : 69-83.
- 9. Tamura M, Milenic DE, Iwahashi M, et al. Structural correlates of an anticarcinoma antibody : identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J Immunol 2000 ; 164 : 1432-41.
- 10. Zhang W, Feng J, Li Y, et al. Humanization of an anti-human TNF-alpha antibody by variable region resurfacing with the aid of molecular modeling. Mol Immunol 2005 ; 42 : 1445-51.
- 11. Roguska MA, Pedersen JT, Keddy CA, et al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci USA 1994 ; 91 : 969-73.
- 12. Padlan EA. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 1991 ; 28 : 489-98.
- 13. Houghton AN, Scheinberg DA. Monoclonal antibody therapies-a ‘constant’ threat to cancer. Nat Med 2000 ; 6 : 373-4.
- 14. Zum Buschenfelde CM, Hermann C, Schmidt B, et al. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 2002 ; 62 : 2244-7.
- 15. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001 ; 344 : 783-92.
- 16. Elkin EB, Weinstein MC, Winer EP, et al. HER-2 testing and trastuzumab therapy for metastatic breast cancer : a cost-effectiveness analysis. J Clin Oncol 2004 ; 22 : 854-63.
- 17. Ames SA, Gleeson CD, Kirkpatrick P. Omalizumab. Nat Rev Drug Discov 2004 ; 3 : 199-200.
- 18. Holgate ST, Djukanovic R, Casale T, Bousquet J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases : an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy 2005 ; 35 : 408-16.
- 19. Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha4 beta1 integrin. Nature 1992 ; 356 : 63-6.
- 20. Noseworthy JH, Kirkpatrick P. Natalizumab. Nat Rev Drug Discov 2005 ; 4 : 101-2.
- 21. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003 ; 348 : 15-23.
- 22. Van Assche G, Van Ranst M, Sciot R, et al. Progressive Multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med online 9 juin 2005.
- 23. Feagan BG, Greenberg GR, Wild G, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4 beta7 integrin. N Engl J Med 2005 ; 352 : 2499-507.
- 24. Osbourn J, Groves M, Vaughan T. From rodent reagents to human therapeutics using antibody guided selection. Methods 2005 ; 36 : 61-8.
- 25. Jespers LS, Roberts A, Mahler SM, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (NY) 1994 ; 12 : 899-903.
- 26. Wu H, Dall’Acqua WF. Humanized antibodies and their applications. Methods 2005 ; 36 : 1-2.
- 27. Anderson PJ. Tumor necrosis factor inhibitors : clinical implications of their different immunogenicity profiles. Semin Arthritis Rheum 2005 ; 34 : 19-22.
- 28. Ritter G, Cohen LS, Williams C Jr, et al. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res 2001 ; 61 : 6851-9.
- 29. Kuus-Reichel K, Grauer LS, Karavodin LM, et al. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies ? Clin Diagn Lab Immunol 1994 ; 1 : 365-72.
- 30. DeNardo GL, Bradt BM, Mirick GR, DeNardo SJ. Human antiglobulin response to foreign antibodies : therapeutic benefit ? Cancer Immunol Immunother 2003 ; 52 : 309-16.
- 31. Mirick GR, Bradt BM, Denardo SJ, Denardo GL. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 2004 ; 48 : 251-7.
- 32. Kimball JA, Norman DJ, Shield CF, et al. The OKT3 antibody response study : a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl Immunol 1995 ; 3 : 212-21.
- 33. Gura T. Therapeutic antibodies : magic bullets hit the target. Nature 2002 ; 417 : 584-6.
- 34. Reichert JM. Monoclonal antibodies in the clinic. Nat Biotechnol 2001 ; 19 : 819-22.
- 35. Featherstone J, Griffiths S. From the analyst’s couch. Drugs that target angiogenesis. Nat Rev Drug Discov 2002 ; 1 : 413-4.