Résumés
Résumé
À l’échelle mondiale, les sols contiennent environ 2000 Gt de carbone (C). Au cours des derniers siècles, l’aménagement des sols a toutefois contribué à la libération vers l’atmosphère de près de 140 Gt de C. L’établissement de certaines cultures sur des terres marginales pourrait néanmoins réduire le C atmosphérique en l’accumulant dans le sol. Cette étude a pour objectif d’identifier les effets de la texture du sol, de l’affectation historique du territoire et du temps écoulé depuis la mise en culture sur l’accumulation du C organique dans le sol (COS) sous deux espèces ligneuses (Populus spp. et Salix spp.) et une espèce herbacée (P. virgatum). Dans l’ensemble, sur d’assez courtes périodes (moins de 20 ans), nos résultats indiquent que le COS de la majorité des sites sous ces cultures est de 5 à 20 % plus élevé que l’affectation préalable. Sous les cultures d’espèces ligneuses et sous P. virgatum, les sites dont la teneur en argile est >20 % avaient des stocks de COS 10 à 20 % plus élevés que les sites témoins, alors que cette différence s’élevait à environ 5 % pour les cultures dont la teneur des sols en argile est <20 %. Par ailleurs, l’établissement de cultures d’espèces ligneuses sur des terres cultivées et sur des prairies et pâturages a entrainé une augmentation de COS de l’ordre de 4 % et 19 %, respectivement. En ce qui a trait à P. virgatum, son établissement sur des terres cultivées a entrainé une augmentation de COS de 12 %, alors que la conversion à partir de prairies et pâturages a entraîné une augmentation de 5 % seulement. Enfin, l’âge des cultures d’espèces ligneuses a eu peu d’effets sur les stocks de COS, mais les cultures de P. virgatum de <5 ans et >5 ans avaient respectivement des stocks de COS 5 % et 11 % supérieurs aux témoins. Les résultats suggèrent que l’accumulation du C dépend de plusieurs facteurs, dont : (1) les argiles qui favorisent la formation de composés organo-minéraux chimiquement stables qui protègent physiquement le carbone de l’activité bactérienne, (2) le labour du sol sous un régime intensif de cultures annuelles qui peut avoir fait perdre du COS sur plusieurs années, offrant donc un plus grand potentiel d’accumulation par la nouvelle culture, (3) le profil racinaire qui, selon l’espèce, enrichit le sol en C à différentes profondeurs, et (4) la quantité de biomasses produite et la vitesse de ces gains, lesquelles dictent l’importance des flux de C au sol, à court et moyen termes.
Mots-clés :
- Affectation du territoire,
- historique,
- carbone,
- sol,
- culture bioénergétique,
- panic érigé,
- peupliers,
- saules,
- accumulation,
- texture
Abstract
Globally, soils contain about 2000 Gt of carbon (C). Over the past centuries, however, land use has contributed to the release of about 140 Gt of C to the atmosphere. Nonetheless, the establishment of crops on marginal lands could reduce atmospheric C by accumulating it in soils. This study aimed to identify the effects of soil texture, land use history and time following cultivation on soil C accumulation since the establishment of two woody species (Populus spp. , and Salix spp. ) and one herbaceous species (Panic virgatum). Overall, over relatively short periods of time (less than 20 years), our results indicate that these cultures accumulate a considerable amount of soil organic carbon (SOC) compared to previous land uses. Under woody species and P. virgatum, sites with clay content >20 % had SOC stocks 10-20 % higher than control sites, whereas this difference was approximately 5 % for crops with soil clay content <20 %. Moreover, the establishment of woody crops on former croplands as well as grasslands and pastures resulted in an increase in SOC of about 4 % and 19 %, respectively. The establishment of P. virgatum on farmlands resulted in a 12 % increase in SOC stocks, while the conversion from grasslands and pastures resulted in an increase of only 5 %. Finally, the age of the cultures of woody species had little effect on SOC stocks, whereas the cultures of P. virgatum <5 years and >5 years had COS stocks 5 % and 11 % higher than the control sites, respectively. The results suggest that C accumulation depends on several factors, including : (1) soil clay content, which promotes the formation of chemically stable organo-mineral compounds that physically protect C from bacterial activity, (2) soil tillage under intensive annual cultures which may have resulted in COS loss over several years, thus providing greater accumulation potential in the new culture, (3) the root profile which, depending on species, increases soil C at different depths, and (4) the amount of biomass produced, which dictates the importance of C fluxes to the soil in the short- and mid-term.
Keywords:
- bioenergey crop,
- carbon,
- accumulation,
- land use,
- history,
- poplar,
- soil,
- texture,
- switchgrass,
- willow
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Bibliographie
- Aslam, T., M.A. Choudhary et S. Saggard, 1999, Tillage impacts on soil microbial biomass C, N and P, earthworms and agronomy after two years of cropping following permanent pasture in New Zealand. Soil Tillage Research, 51, pp. 103-111
- Baldock, J. et O.J. Skjemstad, 2000, Role of the soil matrix and minerals in protecting natural organic materials against biologic attack. Organic Geochemistry, 31, pp. 697-710
- Balesdent, J., E. Besnard, D. Arrouays et C. Chenu, 1998, The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant and Soil, 201, pp. 828-833
- Batjes, N. H., 1996, Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, pp. 151-163
- Block R.M.A., K.C.J. Van Rees et J.D. Knight, 2006, A review of fine root dynamics in Populus plantations. Agroforestry Systems, 67, 73–84
- Bonin C. et R. Lal, 2014, Aboveground productivity and soil carbon storage of biofuel crops in Ohio. Global Change Biology Bioenergy, 6, pp. 67-75
- Cantarello, E., A.C. Newton et R.A. Hill, 2011, Potential effects of future land-sue change on regional carbon stocks in the UK. Environmental Science and Policy, 14, pp. 40-52
- Ceotto, E. et M. Di Candilo, 2011, Medium–term effect of perennial energy crops on soil organic carbon storage. Italian journal of Agronomy, vol 6, no 4, e33
- Coleman, M.D., J.G. Isebrand, D.N. Tolsted et V.R. Tolbert, 2004, Comparing soil carbon of short rotation poplars plantations with agriculture crops and woodlots in North Central United States. Environmental Management, 33, pp. 229-308
- Conant, R.T., M. Easter, K. Paustian, A. Swam et S. Williams, 2007, Impact of periodic tillage on soil C stocks : A synthesis. Soil and Tillage Research, 95, pp. 1-10
- Cordova, C.E. et P.H. Lehman, 2005, Holocene environmental change in southwestern Crimea (Ukraine) in pollen and soil records. Holocene, 15, pp. 263-277
- Corre M.D., R.R. Schnable et J.A. Shaffer, 1999, Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biology and Biochemistry, 31, pp. 1531-1539
- Coûteaux, M.-M., P. Bottner et B. Berg, 1995, Litter decomposition, climate ann litter quality. Trends in Ecology and Evolution, 10, pp. 63-66
- De Deyn, G.B., J.H.C. Cornelissen et R.D. Bardgett, 2008, Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, pp. 516-531
- Ens, J., R.E. Farrell et N. Bélanger, 2013, Early effects of afforestation with willow (Salix purpurea “Hotel” ) on soil carbon and nutrient availability. Forests, 4, pp. 137-154
- Eswaran, H., E. Van Den Berg et P. Reich, 1993, Organic carbon in soils of the world. Soil Science Society of America Journal, 57, pp. 192-194
- Fortunel, C., E. Garnier, R. Joffre, E. Kazakou, H. Questes, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Doležal, O., Eriksson, H. Freitas, C., Golodets, C. Jouany, J. Kigel, M., Kleyer, V., Lehsten, J. Lepš, T., Meier, R. Pakeman, M.P apadimitriou, V.P. Papanastasis, F. Quétier, M. Robson, M. Sternberg, J.-P. Theau, A. Thébault et M. Zarovali, 2009, Leaf traits capture the effects of land-use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90, pp. 698-611
- Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC), 2007, Mitigation of Climate change, dans Climate Change 2007, B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, et L.E. Meyer (éditeurs), Cambridge University Press, Cambridge, UK.
- Grigal D.F. et W.E. Berguson, 1998, Soil carbon changes associated with short-rotation systems. Biomass and Bioenergy, 14, pp. 371-377
- Guo, L.B. et R.M. Gifford, 2002, Soil carbon stocks and land use change : A meta analysis. Global Change Biology, 8, pp. 345-360
- Hansen, E.A., 1993, Soil carbon sequestration beneath hybrid poplar plantations in the north central United States. Biomass and Bioenergy, 5, pp. 431-436
- Heywood, P. et S. Turpin, 2013, Variation in soil carbon stocks with texture and previous landuse in north-western NSW, Australia. Sustainable Agriculture Research, 2, pp. 124-133
- Jobbágy, E.G. et R.B. Jackson, 2000, The vertical distribution of carbon and its relation to climate and vegetation. Ecological Applications, 10, pp. 423-436
- Jug A., F. Makeschin, K.E. Rehfuess et C. Hofmann-Schielle, 1999, Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects, Forest Ecology and Management, 121, pp. 85-99
- Kahle, P., J. Möller, C. Baum et A. Gurgel, 2013, Tillage-induced changes in the distribution of soil organic matter and the soil aggregate stability under a former short rotation coppice. Soil and Tillage Research, 133, pp. 49-53
- Labrecque, M. et T.I. Teodorescu, 2005, Field performance and biomass production of 12 willow and poplars in short-rotation coppice in southern Quebec (Canada). Biomass and Bioenergy, 29, pp. 1-9
- Laganière, J., D.A. Angers et D. Paré, 2010, Carbon accumulation in agriculture soils after afforestation : A meta-analysis. Global Change Biology, 16, pp. 439-453
- Lal, R., 2004a, Soil carbon sequestration to mitigate climate change, Geoderma, 123, pp. 1-22
- Lal, R., 2004b, Agricultural activities and the global carbon cycle, Nutrient Cycling in Agroecosystems, 70 , pp. 103-116
- Lemus, R. et R. Lal, 2005, Bioenergy crops and carbon sequestration. Critical Reviews in Plant Sciences, 24, pp. 1-21
- Li, Y., J. Han., S. Wang., J. Brandle, J. Lian, Y. Luo et F. Zhang, 2014, Soil organic carbon and total nitrogen storage under different land uses in the Naiman Banner, a semiarid degraded region of northern China. Canadian Journal of Soil Science, 94, pp. 9-20
- Liebig, M.A., H.A. Johnson, J.D. Hanson et A.B. Frank, 2005, Soil carbon under switchgrass stands and cultivated cropland. Biomass and Bioenergy, 28, pp. 347-354
- Liebig, M.A., M.R. Schmer, K.P. Vogel et R.B. Mitchell, 2008, Soil carbon storage by switchgrass grown for bioenergy. Bioenergy Research, 1, pp. 215-222
- Mokany, K., R.J. Raison et A.S. Prokushkin, 2006, Critical analysis of root : shoot ratios in terrestrial biomes. Global Change Biology, 12, pp. 84-96
- Nieder, R. et D.K. Benbi, 2008, Carbon and Nitrogen in the Terrestrial Environment, Springer, New York, NY
- Omonode, R.A. et T.J. Vyn, 2006, Vertical distribution of soil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agriculture, Ecosystems and Environment, 117, pp. 159-170
- Pacaldo, R.S., T.A. Volk et R.D. Briggs, 2013, No significant differences in soil organic carbon content along a chronosequence of shrub willow biomass crop fields. Biomass and Bioenergy, 58, pp. 136-142
- Paul, K.I., P.J. Polglase, J.G. Nyakuengama et P.K. Khanna, 2002, Change in soil carbon following afforestation. Forest Ecology and Management, 168, pp. 241–257
- Pinno, B.D. et N. Bélanger, 2008, Ecosystem carbon gains from afforestation in the Boreal Transition ecozone of Saskatchewan (Canada) are coupled with the devolution of Black Chernozems. Agriculture, Ecosystems and Environment, 123, pp. 56-62
- Polglase, P.J., K.I. Paul, P.K. Khanna, J.G. Nyakuengama, A.M. O’Connell, T.S. Grove et M. Battaglia, 2000, Change in soil carbon following afforestation or reforestation, Review of experimental evidence and development of a conceptual framework, National Carbon Accounting System Technical Report No. 20, Australian Greenhouse Office
- Potter, K.N., H.A. Torbert, H.B. Johnson et C.R. Tischler, 1999, Carbon storage after long-term grass establishment on degraded soils. Soil Science, 164, pp. 718-725
- Pregitzer, K.S. et A.L. Friend, 1996, The structure and function of Populus root systems. In Biology of Populus and its implication for management and conservation, R.F. Stettler, H.D. Bradshaw Jr., P.E. Heilman et T.M. Hinckley (éditeurs), NRC Research Press, Ottawa, Ontario, Canada, pp 331-354.
- Rytter, R-S. et L. Rytter, 1998, Growth, decay, and turnover rates of fine roots of basket willows, Canadian Journal of Forest Research, 28, pp. 893-902
- Rytter, R.-S., 2013, The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis. Tree Physiology, 33, pp. 924-939
- Sartori, F., R. Lal, M.H. Ebinger et D.J. Parrish, 2006, Potential soil carbon sequestration and CO2 offset by dedicated energy crops in the USA, Critical Reviews in Plant Sciences, 25, pp. 441-472
- Six, J., E.T. Elliott et K. Paustian, 1999, Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal, 63, pp. 1350-1358
- Tate, K.R., N.A. Scott, D.J. Ross, A. Parshotam et J.J. Claydon, 2000, Plant effects in soil carbon storage and turnover in a montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand, Australian Journal of Soil Research, 38, pp. 685-698
- VandenBygaart, A.J., E.G. Gregorich et D.A. Angers, 2003, Influence of agricultural management on soil organic carbon : A compendium and assessment of Canadian studies, Canadian Journal of Soil Science, 83, pp. 363-380
- Van Veen J.A. et P.J. Kuikman, 1990, Soil structural aspects of decomposition of organic matter by microorganisms, Biogeochemistry, 11, pp. 213-233
- Wilson, B.R., T.B. Koen, P. Barnes, S. Ghosh et D. King, 2011, Soil carbon and related soil properties along a soil type and land-use intensity gradient, New South Wales, Australia, Soil Use and Management, 27, pp. 437-447
- Young, R., B.R. Wilson, M. McLeod et C. Alston, 2005, Carbon storage in the soils and vegetation of contrasting landuses in northern New South Wales, Australia. Australian Journal of Soil Research, 43, pp. 21-31
- Zan, C.S., J.W. Fyles, P. Girouard et R.A. Samson, 2001, Carbon sequestration in perrenial bioenergy, annual corn and uncultivated systems in southern Quebec. Agriculture, Ecosystems and Environment, 86, pp. 135-144
- Zhang, S.Y., Q.B. Yu, G. Chauret et A. Koubaa, 2003, Selection for both growth and wood properties in hybrid poplar clones, Forest Science, 49, pp. 901-908