Résumés
Résumé
Objectifs Cette revue trouve sa motivation dans l’observation que la prise de décision clinique en santé mentale est limitée par la nature des mesures typiquement obtenues lors de l’entretien clinique et la difficulté des cliniciens à produire des prédictions justes sur les états mentaux futurs des patients. L’objectif est de présenter un survol représentatif du potentiel du phénotypage digital couplé à l’apprentissage automatique pour répondre à cette limitation, tout en en soulignant les faiblesses actuelles.
Méthode Au travers d’une revue narrative de la littérature non systématique, nous identifions les avancées technologiques qui permettent de quantifier, instant après instant et dans le milieu de vie naturel, le phénotype humain au moyen du téléphone intelligent dans diverses populations psychiatriques. Des travaux pertinents sont également sélectionnés afin de déterminer l’utilité et les limitations de l’apprentissage automatique pour guider les prédictions et la prise de décision clinique. Finalement, la littérature est explorée pour évaluer les barrières actuelles à l’adoption de tels outils.
Résultats Bien qu’émergeant d’un champ de recherche récent, de très nombreux travaux soulignent déjà la valeur des mesures extraites des senseurs du téléphone intelligent pour caractériser le phénotype humain dans les sphères comportementale, cognitive, émotionnelle et sociale, toutes étant affectées par les troubles mentaux. L’apprentissage automatique permet d’utiles et justes prédictions cliniques basées sur ces mesures, mais souffre d’un manque d’interprétabilité qui freinera son emploi prochain dans la pratique clinique. Du reste, plusieurs barrières identifiées tant du côté du patient que du clinicien freinent actuellement l’adoption de ce type d’outils de suivi et d’aide à la décision clinique.
Conclusion Le phénotypage digital couplé à l’apprentissage automatique apparaît fort prometteur pour améliorer la pratique clinique en santé mentale. La jeunesse de ces nouveaux outils technologiques requiert cependant un nécessaire processus de maturation qui devra être encadré par les différents acteurs concernés pour que ces promesses puissent être pleinement réalisées.
Mots-clés :
- apprentissage automatique,
- apprentissage profond,
- décision clinique,
- nouvelles technologies,
- phénotypage digital,
- prédiction,
- pronostic,
- psychiatrie,
- psychologie,
- téléphone intelligent
Abstract
Objectives This review is motivated by the observation that clinical decision-making in mental health is limited by the nature of the measures obtained in conventional clinical interviews and the difficulty for clinicians to make accurate predictions about their patients’ future mental states. Our objective is to offer a representative overview of the potential of digital phenotyping coupled with machine learning to address this limitation, while highlighting its own current weaknesses.
Methods Through a non-systematic narrative review of the literature, we identify the technological developments that make it possible to quantify, moment by moment and in ecologically valid settings, the human phenotype in various psychiatric populations using the smartphone. Relevant work is also selected in order to determine the usefulness and limitations of machine learning to guide predictions and clinical decision-making. Finally, the literature is explored to assess current barriers to the adoption of such tools.
Results Although emerging from a recent field of research, a large body of work already highlights the value of measurements extracted from smartphone sensors in characterizing the human phenotype in behavioral, cognitive, emotional and social spheres that are all impacted by mental disorders. Machine learning permits useful and accurate clinical predictions based on such measures, but suffers from a lack of interpretability that will hamper its use in clinical practice in the near future. Moreover, several barriers identified both on the patient and clinician sides currently hamper the adoption of this type of monitoring and clinical decision support tools.
Conclusion Digital phenotyping coupled with machine learning shows great promise for improving clinical practice in mental health. However, the youth of these new technological tools requires a necessary maturation process to be guided by the various concerned actors so that these promises can be fully realized.
Keywords:
- clinical decision,
- deep learning,
- digital phenotyping,
- machine learning,
- new technology,
- prediction,
- prognosis,
- psychiatry,
- psychology,
- smartphone
Parties annexes
Bibliographie
- Aledavood, T., Torous, J., Hoyos, A. M. T., Naslund, J. A., Onnela, J.-P. et Keshavan, M. (2019). Smartphone-Based Tracking of Sleep in Depression, Anxiety, and Psychotic Disorders, 1-9. http://doi.org/10.1007/s11920-019-1043-y
- Alshamsi, H., Meng, H. et Li, M. (2016). Real time facial expression recognition app development on mobile phones (pp. 1750-1755). 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). http://doi.org/10.1109/FSKD.2016.7603442
- American Psychiatric Association. (2016). The American Psychiatric Association Practice Guidelines for the Psychiatric Evaluation of Adults (3rd ed.). American Psychiatric Publishing, Inc.
- Bati, G. F. et Singh, V. K. (2018). “Trust Us” : Mobile Phone Use Patterns Can Predict Individual Trust Propensity (pp. 1-14). Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. New York, NY, USA : ACM Press. http://doi.org/10.1145/3173574.3173904
- Baumeister, H. et Montag C. (2019). Digital phenotyping and mobile sensing. New developments in psychoinformatics. Springer.
- Bernard, P., Doré, I., Romain, A.-J., Hains-Monfette, G., Kingsbury, C. et Sabiston, C. (2018). Dose response association of objective physical activity with mental health in a representative national sample of adults : A cross-sectional study. PloS One, 13(10), e0204682-16. http://doi.org/10.1371/journal.pone.0204682
- Birnbaum, M. L., Ernala, S. K., Rizvi, A. F., Arenare, E., Van Meter, A., Choudhury, M. et Kane, J. M. (2019). Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook. Npj Schizophrenia, 1-9. http://doi.org/10.1038/s41537-019-0085-9
- Boukhechba, M., Huang, Y., Chow, P., Fua, K., Teachman, B. A. et Barnes, L. E. (2017). Monitoring social anxiety from mobility and communication patterns (pp. 749-753). Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, NY, USA : ACM. http://doi.org/10.1145/3123024.3125607
- Bourla, A., Ferreri, F., Ogorzelec, L., Peretti, C.-S., Guinchard, C. et Mouchabac, S. (2018). Psychiatrists’ Attitudes Toward Disruptive New Technologies : Mixed-Methods Study. JMIR Mental Health, 5(4), e10240-12. http://doi.org/10.2196/10240
- Buck, B., Scherer, E., Brian, R., Wang, R., Wang, W., Campbell, A. et coll. (2019). Relationships between smartphone social behavior and relapse in schizophrenia : A preliminary report. Schizophrenia Research, 208, 167-172. http://doi.org/10.1016/j.schres.2019.03.014
- Bullis, J. R., Boettcher, H., Zavala, S. S., Farchione, T. J. et Barlow, D. H. (2019). What is an emotional disorder ? A transdiagnostic mechanistic definition with implications for assessment, treatment, and prevention. Clinical Psychology : Science and Practice, 26(2), e12278. http://doi.org/10.1111/cpsp.12278
- Busk, J., Faurholt-Jepsen, M., Frost, M., Bardram, J. E., Vedel Kessing, L. et Winther, O. (2020). Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments : Hierarchical Bayesian Approach. JMIR mHealth and uHealth, 8(4), e15028-14. http://doi.org/10.2196/15028
- Chiu, M., Gatov, E., Vigod, S. N., Amartey, A., Saunders, N. R., Yao, Z. et coll. (2018). Temporal Trends in Mental Health Service Utilization across Outpatient and Acute Care Sectors : A Population-Based Study from 2006 to 2014. The Canadian Journal of Psychiatry, 63(2), 94-102. http://doi.org/10.1177/0706743717748926
- Cohen, A. S., Fedechko, T., Schwartz, E. K., Le, T. P., Foltz, P. W., Bernstein, J. et coll. (2019). Psychiatric Risk Assessment from the Clinician’s Perspective : Lessons for the Future. Community Mental Health Journal, 55(7), 1165-1172. http://doi.org/10.1007/s10597-019-00411-x
- Corcoran, C. M., Carrillo, F., Fernández-Slezak, D., Bedi, G., Klim, C., Javitt, D. C. et coll. (2018). Prediction of psychosis across protocols and risk cohorts using automated language analysis. World Psychiatry : Official Journal of the World Psychiatric Association (WPA), 17(1), 67-75. http://doi.org/10.1002/wps.20491
- Dagum, P. (2018). Digital biomarkers of cognitive function. Npj Digital Medicine, 1-3. http://doi.org/10.1038/s41746-018-0018-4
- Di Matteo, D., Fine, A., Fotinos, K., Rose, J. et Katzman, M. (2018). Patient Willingness to Consent to Mobile Phone Data Collection for Mental Health Apps : Structured Questionnaire. JMIR Mental Health, 5(3), e56. http://doi.org/10.2196/mental.9539
- Durstewitz, D., Koppe, G. et Meyer-Lindenberg, A. (2019). Deep neural networks in psychiatry. Molecular Psychiatry, 1-16. http://doi.org/10.1038/s41380-019-0365-9
- Dwyer, D. B., Falkai, P. et Koutsouleris, N. (2018). Machine Learning Approaches for Clinical Psychology and Psychiatry. Annual Review of Clinical Psychology, 14(1), 91-118. http://doi.org/10.1146/annurev-clinpsy-032816-045037
- East-Richard, C., R Mercier, A., Nadeau, D. et Cellar, C. (2020). Transdiagnostic Neurocognitive Deficits in Psychiatry : A Review of Meta-Analyses. Canadian Psychology/Psychologie Canadienne, 61(3), 190-214. http://doi.org/10.1037/cap0000196
- Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D. et coll. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences, 115(44), 11203-11208. http://doi.org/10.1073/pnas.1802331115
- Eskes, P., Spruit, M., Brinkkemper, S., Vorstman, J. et Kas, M. J. (2016). The sociability score : App-based social profiling from a healthcare perspective. Computers in Human Behavior, 59(c), 39-48. http://doi.org/10.1016/j.chb.2016.01.024
- Exposito, M., Hernandez, J. et Picard, R. (2018). Affective keys : towards unobtrusive stress sensing of smartphone users (pp. 139-145). Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. New York, NY, USA : ACM Press. http://doi.org/10.1145/3236112.3236132
- Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., Andre, E., Busso, C. et coll. (2016). The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Transactions on Affective Computing, 7(2), 190-202. http://doi.org/10.1109/TAFFC.2015.2457417
- Faurholt-Jepsen, M., Busk, J., Frost, M., Vinberg, M., Christensen, E. M., Winther, O. et coll. (2016). Voice analysis as an objective state marker in bipolar disorder. Translational Psychiatry, 6(7) : e856. http://doi.org/10.1038/tp.2016.123
- Fortney, J. C., Unützer, J., Wrenn, G., Pyne, J. M., Smith, G. R., Schoenbaum, M. et Harbin, H. T. (2017). A Tipping Point for Measurement-Based Care. Psychiatric Services, 68(2), 179-188. http://doi.org/10.1176/appi.ps.201500439
- Freeman, D., Sheaves, B., Waite, F., Harvey, A. G. et Harrison, P. J. (2020). Sleep disturbance and psychiatric disorders. Lancet Psychiatry, 7(7), 628-637. http://doi.org/10.1016/S2215-0366(20)30136-X
- Ghosh, S., Hiware, K., Ganguly, N., Mitra, B. et De, P. (2019). Emotion detection from touch interactions during text entry on smartphones. Journal of Human Computer Studies, 130, 47-57. http://doi.org/10.1016/j.ijhcs.2019.04.005
- Goldberg, S. B., Buck, B., Raphaely, S. et Fortney, J. C. (2018). Measuring Psychiatric Symptoms Remotely : a Systematic Review of Remote Measurement-Based Care. Current Psychiatry Reports, 20(10) : 81 1-12. http://doi.org/10.1007/s11920-018-0958-z
- Grabowski, K., Rynkiewicz, A., Lassalle, A., Baron-Cohen, S., Schuller, B., Cummins, N. et coll. (2019). Emotional expression in psychiatric conditions : New technology for clinicians. Psychiatry and Clinical Neurosciences, 73(2), 50-62. http://doi.org/10.1111/pcn.12799
- Hiles, S. A., Lamers, F., Milaneschi, Y. et Penninx, B. W. J. H. (2017). Sit, step, sweat : longitudinal associations between physical activity patterns, anxiety and depression. Psychological Medicine, 47(8), 1466-1477. http://doi.org/10.1017/S0033291716003548
- Hirschtritt, M. E. et Insel, T. R. (2018). Digital Technologies in Psychiatry : Present and Future. Focus, 16(3), 251-258. http://doi.org/10.1176/appi.focus.20180001
- Jongs, N., Jagesar, R., Haren, N. E. M., Penninx, B. W. J. H., Reus, L., Visser, P. J. et coll. (2020). A framework for assessing neuropsychiatric phenotypes by using smartphone-based location data. Translational Psychiatry, 10, 211. http://doi.org/10.1038/s41398-020-00893-4
- Kircher, T., Bröhl, H., Meier, F. et Engelen, J. (2018). Formal thought disorders : from phenomenology to neurobiology. Lancet Psychiatry, 5(6), 515-526. http://doi.org/10.1016/S2215-0366(18)30059-2
- Koppe, G., Guloksuz, S., Reininghaus, U. et Durstewitz, D. (2019). Recurrent Neural Networks in Mobile Sampling and Intervention. Schizophrenia Bulletin, 45(2), 272-276. http://doi.org/10.1093/schbul/sby171
- Liu, G., Henson, P., Keshavan, M., Pekka-Onnela, J. et Torous, J. (2019). Assessing the potential of longitudinal smartphone based cognitive assessment in schizophrenia : A naturalistic pilot study. Schizophrenia Research Cognition, 17, 100144. http://doi.org/10.1016/j.scog.2019.100144
- Low, D. M., Bentley, K. H. et Ghosh, S. S. (2020). Automated assessment of psychiatric disorders using speech : A systematic review. Laryngoscope Investigative Otolaryngology, 5(1), 96-116. http://doi.org/10.1002/lio2.354
- Lu, H., Frauendorfer, D., Rabbi, M., Mast, M. S., Chittaranjan, G. T., Campbell, A. T. et coll. (2012). Stresssense : Detecting stress in unconstrained acoustic environments using smartphones (pp. 351-360). Proceedings of the 2012 ACM Conference on Ubiquitous Computing. http://doi.org/10.1145/2370216.2370270
- Lundberg, S.M. et Lee, S.-I. (2017) A unified approach to interpreting model predictions (pp. 4768-4777). Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). http://doi.org/10.5555/3295222.3295230
- Martinez, B., Valstar, M. F., Jiang, B. et Pantic, M. (2019). Automatic Analysis of Facial Actions : A SurveyAutomatic Analysis of Facial Actions : A Survey. IEEE Transactions on Affective Computing, 10(3), 325-347. http://doi.org/10.1109/TAFFC.2017.2731763
- Martinez-Martin, N., Insel, T. R., Dagum, P., Greely, H. T. et Cho, M. K. (2018). Data mining for health : staking out the ethical territory of digital phenotyping. Npj Digital Medicine, 1-5. http://doi.org/10.1038/s41746-018-0075-8
- Mastoras, R.-E., Iakovakis, D., Hadjidimitriou, S., Charisis, V., Kassie, S., Alsaadi, T. et coll. (2019). Touchscreen typing pattern analysis for remote detection of the depressive tendency. Scientific Reports, 9(1), 13 414. http://doi.org/10.1038/s41598-019-50002-9
- Messias, J., Diniz, J. P., Soares, E., Ferreira, M., Araújo, M., Bastos, L. et coll. (2017). An evaluation of sentiment analysis for mobile devices. Social Network Analysis and Mining, 7 : 20. http://doi.org/10.1007/s13278-017-0437-2
- Mohr, D. C., Zhang, M. et Schueller, S. M. (2017). Personal Sensing : Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annual Review of Clinical Psychology, 13(1), 23-47. http://doi.org/10.1146/annurev-clinpsy-032816-044949
- Murdoch, W. J., Singh, C., Kumbier, K., East-Richard, C. et Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071-22080. http://doi.org/10.1073/pnas.1900654116
- Myin-Germeys, I., Kasanova, Z., Vaessen, T., Vachon, H., Kirtley, O., Viechtbauer, W. et Reininghaus, U. (2018). Experience sampling methodology in mental health research : new insights and technical developments. World Psychiatry, 17(2), 123-132. http://doi.org/10.1002/wps.20513
- Nicholas, J., Shilton, K., Schueller, S. M., Gray, E. L., Kwasny, M. J. et Mohr, D. C. (2019). The Role of Data Type and Recipient in Individuals’ Perspectives on Sharing Passively Collected Smartphone Data for Mental Health : Cross-Sectional Questionnaire Study. JMIR mHealth and uHealth, 7(4), e12578-10. http://doi.org/10.2196/12578
- Onnela, J.-P. (2021). Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacology, 46, 45-54. http://doi.org/10.1038/s41386-020-0771-3
- Orben, A. (2020). The Sisyphean Cycle of Technology Panics. Perspectives on Psychological Science, 15(5), 1143-1157. http://doi.org/10.1177/1745691620919372
- Passell, E., Dillon, D. G., Baker, J. T., Vogel, S. C. et Scheuer, L. S. (2019). Digital Cognitive Assessment : Results from the TestMyBrain NIMH Research Domain Criteria (RDoC) Field Test Battery Report. https://doi.org/10.31234/osf.io/dcszr
- Pillai, R. G., Thelwall, M. et Orasan, C. (2018). Detection of Stress and Relaxation Magnitudes for Tweets (pp. 1677-1684). Companion proceedings of the The Web Conference. http://doi.org/10.1145/3184558.3191627
- Pulekar, G. et Agu, E. (2016). Autonomously sensing loneliness and its interactions with personality traits using smartphones (pp. 134-137). 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT).http://doi.org/10.1109/HIC.2016.7797715
- Rachuri, K. K., Musolesi, M., Mascolo, C., Rentfrow, P. J., Longworth, C. et Aucinas, A. (2010). EmotionSense : a mobile phones based adaptive platform for experimental social psychology research (pp. 281-290). Proceedings of the 12th ACM International Conference on Ubiquitous Computing,. http://doi.org/10.1145/1864349.1864393
- Rogler, L. H., Mroczek, D. K., Fellows, M. et Loftus, S. T. (2001). The neglect of response bias in mental health research. The Journal of Nervous and Mental Disease, 189(3), 182-187. http://doi.org/10.1097/00005053-200103000-00007
- Shortliffe, E. H. et Sepúlveda, M. J. (2018). Clinical Decision Support in the Era of Artificial Intelligence. Jama, 320(21), 2199-2. http://doi.org/10.1001/jama.2018.17163
- Sliwinski, M. J., Mogle, J. A., Hyun, J., Munoz, E., Smyth, J. M. et Lipton, R. B. (2018). Reliability and Validity of Ambulatory Cognitive Assessments. Assessment, 25(1), 14-30. http://doi.org/10.1177/1073191116643164
- Sofia, R., Firdose, S., Lopes, L. A., Moreira, W. et Mendes, P. (2016). NSense : A people-centric, non-intrusive opportunistic sensing tool for contextualizing nearness (pp. 1-6). 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom). http://doi.org/10.1109/HealthCom.2016.7749490
- Spathis, D., Servia-Rodriguez, S., Farrahi, K., Mascolo, C. et Rentfrow, J. (2019). Sequence Multi-task Learning to Forecast Mental Wellbeing from Sparse Self-reported Data (pp. 2886-2894). Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA : ACM. http://doi.org/10.1145/3292500.3330730
- Stiglic, G., Kocbek, P., Fijacko, N., Zitnik, M., Verbert, K. et Cilar, L. (2020). Interpretability of machine learning-based prediction models in healthcare. WIREs Data Mining and Knowledge Discovery, 10(5), e1379. http://doi.org/10.1002/widm.1379
- Torous, J., Wisniewski, H., Bird, B., Carpenter, E., David, G., Elejalde, E. et coll. (2019). Creating a Digital Health Smartphone App and Digital Phenotyping Platform for Mental Health and Diverse Healthcare Needs : an Interdisciplinary and Collaborative Approach. Journal of Technology in Behavioral Science, 4, 73-85. http://doi.org/10.1007/s41347-019-00095-w
- Torous, J., Wisniewski, H., Liu, G. et Keshavan, M. (2018). Mental Health Mobile Phone App Usage, Concerns, and Benefits Among Psychiatric Outpatients : Comparative Survey Study. JMIR Mental Health, 5(4), e11715. http://doi.org/10.2196/11715
- Umematsu, T., Sano, A. et Picard, R. W. (2019). Daytime Data and LSTM can Forecast Tomorrow’s Stress, Health, and Happiness (pp. 2186-2190). The 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/EMBC.2019.8856862
- Vaizman, Y., Ellis, K. et Lanckriet, G. (2017). Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE Pervasive Computing, 16(4), 62-74. http://doi.org/10.1109/MPRV.2017.3971131
- Valstar, M. F., Mehu, M., Bihan Jiang, Pantic, M. et Scherer, K. (2012). Meta-Analysis of the First Facial Expression Recognition Challenge. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(4), 966-979. http://doi.org/10.1109/TSMCB.2012.2200675
- Wang, R., Wang, W., Obuchi, M., Scherer, E., Brian, R., Ben-Zeev, D. et coll. (2020). On Predicting Relapse in Schizophrenia using Mobile Sensing in a Randomized Control Trial (pp. 1-8). Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom). http://doi.org/10.1109/PerCom45495.2020.9127365
- Warraich, H. J., Califf, R. M. et Krumholz, H. M. (2018). The digital transformation of medicine can revitalize the patient-clinician relationship. Npj Digital Medicine, 1-3. http://doi.org/10.1038/s41746-018-0060-2
- Weizenbaum, E., Torous, J. et Fulford, D. (2020). Cognition in Context : Understanding the Everyday Predictors of Cognitive Performance in a New Era of Measurement. JMIR mHealth and uHealth, 8(7), e14328. http://doi.org/10.2196/14328
- Wichers, M. (2013). The dynamic nature of depression : a new micro-level perspective of mental disorder that meets current challenges. Psychological Medicine, 44(07), 1349-1360. http://doi.org/10.1017/S0033291713001979
- Wichers, M., Schreuder, M. J., Goekoop, R. et Groen, R. N. (2019). Can we predict the direction of sudden shifts in symptoms ? Transdiagnostic implications from a complex systems perspective on psychopathology. Psychological Medicine, 49(3), 380-387. http://doi.org/10.1017/S0033291718002064
- Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F. et coll. (2019). Do no harm : a roadmap for responsible machine learning for health care. Nature Medicine, 25, 1337-1340. http://doi.org/10.1038/s41591-019-0548-6
- Wright, A. G. C. et Woods, W. C. (2020). Personalized Models of Psychopathology. Annual Review of Clinical Psychology, 16(1), 49-74. http://doi.org/10.1146/annurev-clinpsy-102419-125032
- Zulueta, J., Piscitello, A., Rasic, M., Easter, R., Babu, P., Langenecker, S. A. et coll. (2018). Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata : A BiAffect Digital Phenotyping Study. Journal of Medical Internet Research, 20(7), e241. http://doi.org/10.2196/jmir.9775