Résumés
Résumé
L’industrie textile consomme de grandes quantités d’eau et utilise des colorants organiques pour teindre ses produits commerciaux. Ces colorants synthétiques sont à la fois toxiques et responsables de la coloration des eaux usées, ce qui nécessite de les traiter avant leur rejet. La plupart des colorants ne sont pas biodégradables et une fois rejetés provoquent une altération du milieu aquatique. Parmi les procédés de traitement des rejets liquides, l’adsorption sur charbon actif est une technique facile à mettre en oeuvre et peu onéreuse. L’objectif de cette étude consiste en la préparation de biochars à partir de roseau commun afin d’obtenir un adsorbant applicable pour la décoloration des effluents de l’industrie textile. Le roseau commun (Phragmites australis) de la rivière de Sed–Ksob de M’sila (Algérie) a été valorisé et utilisé comme précurseur pour la fabrication de biochars par activation à l’acide phosphorique. La chimie de surface des matériaux a été caractérisée par titrage sélectif (dosage de Boehm), analyse thermogravimétrique (ATG) et mesure du point de charge nulle (pHpzc). La texture poreuse a été étudiée par l’adsorption du bleu de méthylène (BM) et la mesure de l’indice d’iode. Les résultats de l’analyse ATG et du dosage de Boehm montrent la présence de nombreux groupes fonctionnels de surface sur les biochars. Les teneurs en groupes fonctionnels oxygénés dépendent du rapport d'imprégnation en acide phosphorique, à l'exception de celui obtenu à un rapport d'imprégnation de 150 %. L’adsorption du BM et le test d’indice d’iode indiquent une augmentation de la surface spécifique lorsqu’on augmente le rapport d'imprégnation. Ceci est dû au développement de la microporosité et de la mésoporosité. Les biochars ont été testés pour leur performance d'adsorption vis-à-vis d'un colorant anionique, le méthylorange (MeO). L’influence de différents paramètres expérimentaux a été étudiée : la concentration, le temps de contact et la température. L’étude des isothermes d'adsorption montre que le modèle de Langmuir décrit bien le processus de l’adsorption du MeO sur les biochars préparés. La cinétique d’adsorption peut être décrite par les modèles de pseudo-second ordre et de diffusion dans le film liquide. Le phénomène d’adsorption est de type physique et endothermique.
Mots-clés:
- biochars,
- porosité,
- adsorption,
- groupes fonctionnels de surface,
- roseau commun
Abstract
The textile industry uses large amount of water and organic dyes to tint their products. These synthetic dyes are toxic and cause water coloring. This results in colored wastewater that must be treated before being discharged. In addition, most dyes are not biodegradable, and once released they alter the aquatic environment. Among the processes for treating these effluents, adsorption is an easy and a cost-effective process to implement. The objective of this study is the preparation of biochars from common reed applicable for the discoloration of effluents used in the textile industry. Common reed (Phragmites australis) has been collected from the Sed-Ksob river of M'sila (Algeria) and used as precursor for the production of biochars activated by phosphoric acid. The surface chemistry of the prepared materials has been characterized using selective titration (Boehm assay), TGA analysis and pH of point zero charge (pHpzc) measurements. The porous texture has been investigated by using methylene blue adsorption and iodine number measurements. The results of the TGA analysis and the Boehm assay show the presence of many superficial functional groups on the surface of the biochars. The amount of oxygenated functional groups on all the prepared biochars depends on the impregnation ratio of phosphoric acid, except for the one obtained at 150% impregnation ratio. The adsorption of methylene blue and the iodine test indicate an increase in the specific surface area with an increase in the impregnation ratio due to the development of the microporosity and the mesoporosity. The adsorption properties of methyl orange, an anionic dye, were studied on the prepared biochars as function of concentration, contact time, and temperature. The Langmuir model describes well the equilibrium adsorption of methyl orange on the prepared biochars. The adsorption kinetics are described by the pseudo-second order and the liquid film diffusion models. An endothermic physical adsorption of methyl orange on the prepared biochars has been highlighted.
Key words:
- biochars,
- porosity,
- adsorption,
- functional surface groups,
- common reed
Parties annexes
Références bibliographiques
- AARFANE A., A. SALHI, M. EL KRATI, S. TAHIRI, M. MONKADE, EK. LHADI et M. BENSITEL (2014). Étude cinétique et thermodynamique de l’adsorption des colorants Red195 et Bleu de méthylène en milieu aqueux sur les cendres volantes et les mâchefers. J. Mater. Environ. Sci., 5, 1927-1939.
- ABBAZ M., R. ABA AAKI, R. EL HAOUTI, S. ET-TALEB, M. EZ-ZAHERY, S. LHANAFI et N. EL ALEM (2014). Élimination du bleu de méthylène dans l’eau par adsorption sur le sable titanifère. J. Mater. Environ. Sci., 5, 2418-2425.
- ABIA A.A. et E.D. ASUQUO (2006). Lead (II) and nickel (II) adsorption kinetics from aqueous metal solutions using chemically modified and unmodified agricultural adsorbents. Afr. J. Biotechnol., 5, 1475-1482.
- ABOUA K.N., D.B. SORO, M. DIARRA, K. DIBI, K.R. N’GUETTIA et K.S. TRAORE (2018). Étude de l’adsorption du colorant orange de méthyle sur charbons actifs en milieu aqueux: influence de la concentration de l’agent chimique d’activation. Afr. Sci., 14, 322-331.
- AHMARUZZAMAN M. et D.K. SHARMA (2005). Adsorption of phenols from wastewater. J. Colloid Interface Sci., 287, 14-24.
- ALLEN S.J. (1996). Types of adsorbent materials. Dans : Use of adsorbents for the removal of polluants from wastewaters. MCKAY G. (éd.), CRC Press, Boca Raton, États-Unis, chap. 5, pp. 59-97.
- ALZAYDIEN A.S. (2015). Adsorption behavior of methyl orange onto wheat bran: Role of surface and pH. Orient. J. Chem., 31, 643-651.
- AVOM J., J. KETCHA MBADCAM, M.R.L. MATIP et P. GERMAIN (2001). Adsorption isotherme de l’acide acétique par des charbons d’origine végétale. Afr. J. Sci. Technol., 2, 1-7.
- AYRACI E. et N. HODA (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere, 60, 1600-1607.
- BATZIAS F.A. et D.K. SIDIRAS (2007). Dye adsorption by prehydrolysed beech sawdust in batch and fixed-bed systems. Bioresour. Technol., 98, 1208-1217.
- BEKCI Z., Y. SEKI et M.K. YURDAKOC (2006). Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J. Hazard. Mater., 133, 233-242.
- BELHAMDI B., Z. MERZOUGUI, M. TRARI et A. ADDOUN (2016). A kinetic, equilibrium and thermodynamic study of L-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J. Appl. Res.Tech., 14, 354-366.
- BELLIFA A., M. MAKHLOUF et B.Z.H. HECHEMI (2017). Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta. Phys. Pol. A., 132, 466-468.
- BENADDI H., D. LEGRAS, J.N. ROUZAUD et F. BEGUIN (1998). Influence of the atmosphere in the chemical activation of wood by phosphoric acid. Carbon, 36, 306-309.
- BOUGUETTOUCHA A., A. REFFAS, D. CHEBLI, T. MEKHALIF et A. AMRANE (2016). Novel activated carbon prepared from an agricultural waste, Stipa tenacissima, based on ZnCl2 activation-characterization and application to the removal of methylene blue. Desalin. Water Treat., 57, 24056-24069.
- CHEN-LU Y. et J. MCGARRAHAN (2006). Electrochemical coagulation for textile effluent decolorization. J. Hazard. Mater., B127, 40-47.
- CHEN S., J. ZHANG, C. ZHANG, Q. YUE, Y. LI et C. LI (2010). Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from phragmites australis. Desalination, 252, 149-156.
- CHEN Y., Y. ZHU, Z. WANG, Y. LI, L. WANG, L. DING, X. GAO, Y. MA et Y. GUO (2011). Application studies of activated carbon derived from rice husks produced by chemical-thermal process. Adv. Colloid Interface Sci., 163, 39-52.
- CRINI G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 30, 38-70.
- CRINI G. (2006). Non-conventional low-cost adsorbents for dye removal. Bioresour. Technol., 97, 1061-1085.
- DUBININ M.M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem. Rev., 60, 235-266.
- ELASS K., A. LAACHACH, A. ALAOUI AND M. AZZI (2010). Removal of methylene blue from aqueous solution using ghassoul, a low-cost adsorbent. Appl. Ecol. Env. Res., 8, 153-163.
- FREUNDLICH H. (1909). Kapillarchemie: eine darstellung der chemie der kolloide und verwandter gebiete. 4e édition, Akademische verlagsgesellschaft, Leipzig, Allemagne, 591 p.
- GILES C.H., D. SMITH et A. HUITSON (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci., 47, 755-765.
- GIRGIS B.S. et A.N.A. EL-HENDAWY (2002). Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Micropor. Mesopor. Mat., 52, 105-117.
- GRAHAM D. (1955). Characterization of physical adsorption systems III. The separate effects of pore size and surface acidity upon the adsorbent capacities of activated carbons. J. Phys. Chem., 59, 896-900.
- GUIBAL E. (2004). Interactions of metal ions with chitosan-based sorbents. Sep. Purif. Technol., 38, 43-74.
- HAIGHT Jr. G.P. (1965). The tin (II)-methyl orange reaction: A kinetics experiment for introductory chemistry. J. Chem. Educ., 42, 478.
- HANG P.T. et G.W. BRINDLEY (1970). Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities. Clays Clay Miner., 18, 203-212.
- HO Y.S. et G. MCKAY (1999). Pseudo-second order model for sorption processes. Process Biochem., 34, 451-465.
- HOUAS A., I. BAKIR, M. KSIBI et E. ELALOUI (1999). Étude de l’élimination du bleu de méthylène dans l’eau par le charbon actif commercial CECA40. J. Chim. Phys., 96, 479-486.
- HU S.H. et S.H. HU (2013). Pyrolysis of paper sludge and utilization for ionic dye adsorption. Bioresources, 8, 1028-1042.
- HUANG R., Q. LIU, J. HUO et B. YANG (2017). Adsorption of methyl orange onto protonated cross-linked chitosan. Arab. J. Chem., 10, 24-32.
- IOANNIDOU O. et A. ZABANIOTOU (2007). Agricultural residues as precursors for activated carbon production - A review. Renew. Sust. Energ. Rev., 11, 1966-2005.
- JAGTOYEN M. et F. DERBYSHIRE (1998). Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 36, 1085-1097.
- JALIL A.A., S. TRIWAHYONO, S.H. ADAM, N.D. RAHIM, M.A. AZIZ, N.H. HAIROM, N.A. RAZALI, M.A. ABIDIN et M.K. MOHAMADIAH (2010). Adsorption of methyl orange from aqueous solution on to calcined Lapindo volcanic mud. J. Hazard. Mater., 181, 755-762.
- JIA P., H. TAN, K. LIU et W. GAO (2018). Removal of methylene blue from aqueous solution by bone char. Appl. Sci., 8, 1903, 1-11.
- KACHA S., M.S. OUALI et S. ELMALEH (1997). Élimination des colorants des eaux résiduaires de l’industrie textile par la bentonite et des sels d’aluminium. J. Water Sci., 10, 233-248.
- KASAOKA S., Y. SAKATA, E. TANAKA et R. NAITOH (1987). Preparation of activated fibrous carbon from phenolic fabric and its molecular sieving properties. Nippon Kagaku Kaishi, 1987, 990-1000.
- KIFUANI K.M., A.K.K. MAYEKO, P.N. VESITULUTA, B.I. LOPAKA, G.E. BAKAMBO, B.M. MAVINGA et J.M. LUNGUYA (2018). Adsorption d’un colorant basique, Bleu de Méthylène, en solution aqueuse, sur un bioadsorbant issu de déchets agricoles de Cucumeropsis mannii Naudin. Int. J. Biol. Chem. Sci., 12, 558-575.
- KHELIFI O., I. MEHREZ, M. YOUNSI, M. NACEF et A.M. AFFOUNE (2018). Adsorption du méthylorange sur un biosorbant à base de noyaux de mangue. Larhyss J., 36, 145-156.
- KONER S., B. KUMAR SAHA, R. KUMAR et A. ADAK (2011). Adsorption kinetics and mechanism of methyl orange dye on modified silica gel factory waste. Int. J. Curr. Res., 3, 128-133.
- KRA D.O., N.A. KOUADIO, G.P. ATHEBA, B. COULIBALY, A.N. BLAISE, G. GILDAS et A. TROKOUREY (2015). Modélisation des propriétés adsorbantes de charbons activés issus de deux variétés d’Acacia (auriculiformis et mangium). Int. J. Innov. Sci. Res., 13, 542-553.
- KRIKA F. et O.F. BENLAHBIB (2015). Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent: equilibrium, kinetic and thermodynamic study of removal process. Desalin. Water Treat., 53, 3711-3723.
- KUMAR M. et R. TAMILARASAN (2013). Modeling of experimental data for the adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Prosopis juliflora. Pol. J. Chem. Technol., 15, 29-39.
- LAINE J., A. CALAFAT et M. LABADY (1989). Preparation and characterization of activated carbons from coconut shell impregnated. Carbon, 27, 191-195.
- LAKSACI H., A. KHELIFI, M. TRARI et A. ADDOUN (2017). Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. J. Clean. Prod., 147, 254-262.
- LANGMUIR I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40, 1361-1403.
- LOPEZ-RAMON M.V., F. STOECKLI, C. MORENO-CASTILLA et F. CARRASCO-MARIN (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 37, 1215-1221.
- LOW M.J.D. (1960). Kinetics of chemisorption of gases on solids. Chem. Rev., 60, 267-312.
- MANSOUR H., O. BOUGHZALA, D. DRIDI, D. BARILLIER, L. CHEKIR-GHEDIRA et R. MOSRATI (2011). Les colorants textiles sources de contamination de l’eau : criblage de la toxicité et des méthodes de traitement. J. Water Sci., 24, 209-238.
- MARSH H. et F. RODRIGUEZ-REINOSO (2006). Activated carbon. 1re édition, Elsevier Science, Paris, France, 554 p.
- MOLINA-SABIO M. et F. RODRÍGUEZ-REINOSO (2004). Role of chemical activation in the development of carbon porosity. Colloid. Surface A, 241, 15-25.
- NOMANBHAY S.M. et K. PALANISAMY (2005). Removal of heavy metal from industrial waste using chitosan coated oil palm shell charcoal. Electron. J. Biotechn., 8, 43-53.
- NKO’O ABUIBOTO M.C., J. AVOM et R. MPON (2016). Évaluation des propriétés de charbons actifs de résidus de Moabi (Baillonella toxisperma Pierre) par adsorption d'iode en solution aqueuse. J. Water Sci., 29, 51-60.
- PELEKANI C. et V.L. SNOEYINK (2000). Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon, 38, 1423-1436.
- PETRINIC I., N.P. RAJ ANDERSEN, S. SOSTAR-TURK et A.M. LE MARECHAL (2007). The removal of reactive dye printing compounds using nanofiltration. Dyes Pigm., 74, 512-518.
- QADEER R. et S. AKHTAR (2005). Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem., 29, 95-99.
- RAJABI M., O. MORADI et A. MAZLOMIFAR (2015). Adsorption of methyl orange dye from water solutions by carboxylate group functionalized multi-walled carbon nanotubes. Int. J. Nano. Dimens., 6, 227-240.
- REFFAS A., V. BERNARDET, B. DAVID, L. REINERT, M. DUBOIS, M. BENCHEIKHLECINE et L. DUCLAUX (2010). Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and nylosan red N-2RBL. J. Hazard. Mater., 175, 779-788.
- SANTAMARINA J.C., K.A. KLEIN, Y.H. WANG et E. PRENCKE (2002). Specific surface: determination and relevance. Can. Geotech. J., 39, 233-241.
- SERPEN A., B. ATAC et V. GBKMEN (2007). Adsorption of Maillard reaction products from aqueous solutions and sugar syrups using adsorbent resin. J. Food Eng., 82, 342-350.
- SOLEIMANI M. et T. KAGHAZCHI (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - An agricultural waste. Bioresour. Technol., 99, 5374-5383.
- SUBBAIAH M.V. et D.S. KIM (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicol. Environ. Saf., 128, 109-117.
- SUHAS, PJM. CARROTT et M.M.L. RIBEIRO CARROTT (2007). Lignin from natural adsorbent to activated carbon. Bioresour. Technol., 98, 2301-2312.
- TAN I.A.W., B.H. HAMEED et A.L. AHMAD (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng., 127, 111-119.
- TCHUIFON D.R., S.G. ANAGHO, E. NJANJA, J.N. GHOGOMU, N.G. NDIFOR-ANGWAFOR et T. KAMGAING (2014). Equilibrium and kinetic modelling of methyl orange adsorption from aqueous solution using rice husk and egussi peeling. Int. J. Chem. Sci., 12, 741-761.
- TEMKIN M.I. (1941). Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. J. Phys. Chem., 15, 296-332.
- UMPUCH C. et S. SAKAEW (2013). Removal of methyl orange from aqueous solutions by adsorption using chitosan intercalated montmorillonite. Songklanakarin J. Sci. Technol., 35, 451- 459.
- WEBER W.J. et J.C. MORRIS (1963). Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div., 89, 31-60.
- YAKOUT S.M., M.R. HASSAN, M.E. EL-ZAIDY, O.H. SHAIR et A.M. SALIH (2019). Kinetic study of methyl orange adsorption on activated carbon derived from pine (Pinus strobus) sawdust. Bioresources, 14, 4560-4574.