Résumés
Abstract
Arsenic pollution is one of the global issues which affect the drinking water supply in Burkina Faso, mainly in rural areas. To mitigate this water pollution, ferromagnetic activated carbon (FAC) has been prepared by chemical activation using rice husk and iron chloride solution to be used as an adsorbent of arsenic. Characterization with some analytical techniques revealed this carbon is microporous with a specific surface area of 150 m2∙g-1 and ferromagnetic properties. This work aims to evaluate the equilibrium conditions of As(V) removal and the adsorption capacity of FAC. Batch experiments were undertaken to evaluate the performance of FAC for arsenic removal under various operating conditions and the mechanism of the removal process. Results showed an increase of the removal percentage with the increase of the contact time, indicating a saturation during 60 min. The removal of As(V) is influenced by the increase of the initial arsenic concentration causing an increase of the adsorption capacity of FAC. The increase of pH showed a variation of the removal percentage indicating a maximum removal at pH 7 which corresponds to an adsorption capacity of 153 µg∙g-1. Both monolayer adsorption and ion exchange constitute the mechanism of removal of As(V) using FAC. The kinetics of the process is described by a pseudo-second order model.
Key words:
- arsenic removal,
- chemical activation,
- ferromagnetic activated carbon,
- water
Résumé
La pollution des eaux par l’arsenic est un des problèmes globaux qui entravent l’approvisionnement en eau potable au Burkina Faso, principalement en milieu rural. Pour pallier cette pollution, du charbon actif ferromagnétique a été préparé par activation chimique à partir de balles de riz et de chlorure de fer hexahydraté pour être utilisé comme adsorbant dans le traitement de l’arsenic. La caractérisation de ce charbon par des techniques analytiques a révélé un charbon microporeux avec une surface spécifique de 150 m2∙g-1 et une propriété ferromagnétique. Ce travail a pour but d’évaluer les conditions d’équilibre de l’élimination de l’As(V) et la capacité d’adsorption du charbon actif. Des expériences en mode batch ont été réalisées pour évaluer la performance de ce charbon dans l’élimination de l’arsenic sous différentes conditions ainsi que pour étudier la cinétique du processus. Les résultats ont montré une augmentation de l’élimination de l’As(V) avec le temps de contact et la saturation du charbon a été obtenue au bout de 60 min de contact. L’augmentation de la concentration initiale en As(V) a entrainé une augmentation de la capacité d’adsorption qui est passé de 0,12 à 3,66 µg∙g-1. L’augmentation du pH entre 3 et 11 a révélé une variation du taux d’élimination de l’As(V) avec un maximum à pH = 7 correspondant à une capacité d’adsorption de 153 µg∙g-1. L’adsorption en monocouche, suivie d’un échange anionique, constitue le mécanisme de l’élimination de l’As(V) par le charbon. La cinétique du processus est de pseudo-second ordre.
Mots-clés:
- élimination d’arsenic,
- activation chimique,
- charbon actif ferromagnétique,
- eau
Parties annexes
References
- ANSARI R. and M. SADEGH (2007). Application of activated carbon for removal of arsenic ions from aqueous solutions. E-J. Chem., 4, 103-108.
- ANSONE L., M. KLAVINS, A. ROBALDS and A. VIKSNA (2012). Use of biomass for removal of arsenic compounds. Latvian J. Chem., 4, 324-335.
- BERG M., H.C. TRAN, T.C. NGUYEN, H.V. PHAM, R. SCHERTENLEIB and W. GIGER (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol., 35, 2621-2626.
- DESJARDINS R. (1997). Le traitement des eaux. 2e édition, École polytechnique de Montréal (QC), Canada, 303 p.
- DIN S.U., T. MAHMOOD, A. NAEEM, M. HAMAYUN and N.S. SHAH (2017). Detailed kinetics study of arsenate adsorption by a sequentially precipitated binary oxide of iron and silicon. Environ. Technol., 40, 261-269.
- DRIEHAUS W., M. JEKEL and U. HILDEBRANDT (1998). Granular ferric hydroxide - a new adsorbent for the removal of arsenic from natural water. J. Water Supply Res. T., 47, 30-35.
- FREUNDLICH H.M.F. (1906). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57, 385-470.
- GUEYE M. (2015). Développement de charbon actif à partir de biomasses lignocellulosiques pour des applications dans le traitement de l’eau. Thèse de doctorat, Institut International de l’Ingénierie de l’Eau et de l’Environnement (2iE), Burkina Faso, 229 p.
- HALL K.R., L.C. EAGLETON, A. ACRIVOS and T. VERMEULEN (1966). Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Indus. Eng. Chem. Fund. J., 5, 212-223.
- HAN C., H. LI, H. PU, H. YU, L. DENG, S. HUANG and Y. LUO (2013). Synthesis and characterization of mesoporous alumina and their performances for removing arsenic (V). Chem. Eng. J., 217, 1-9.
- HO Y.S. and G. MCKAY (1999). Pseudo second order model for sorption process. Process Biochem., 34, 451-465.
- HO Y.S., J.C.Y. NG and G. MCKAY (2000). Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Rev., 29, 189-232.
- HUGHES M.F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicol. Lett., 133, 1-16.
- KNUDSEN J., Y. PRADELLES and A. ZOUGOURI (2005). Étude approfondie dans 8 villages de la région Nord ayant des forages à taux d'arsenic élevés. Projet DANIDA, Ministère des Affaires étrangères, Burkina Faso, pp. 6-98.
- LAGERGREN S. and B.K. SVENSKA (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39.
- LANGMUIR I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40, 1361-1403.
- LIU X., H. AO, X. XIONG, J. XIAO et J. LIU (2012). Arsenic removal from water by iron-modified bamboo charcoal. Water Air Soil Pollut., 223, 1033-1044.
- MAHMOOD T, T. SADDIQUE, A. NAEEM, M. ASLAM and R. ALI (2011). Kinetic and thermodynamic study of Cd(II), Co(II) and Zn(II) adsorption from aqueous solution by NiO. Chem. Eng. J., 171, 935-940.
- MAHMOOD T., M. ASLAM, A. NAEEM, T. SIDDIQUE and S. UD DIN (2018a). Adsorption of As(III) from aqueous solutions onto iron impregnated used tea activated carbon: Equilibrium, kinetic and thermodynamic study. J. Chil. Chem. Soc., 63, 3855-3866.
- MAHMOOD T., M. ASLAM, A. NAEEM, R. ALI and T. SADDIQUE (2018b). Equilibrium, kinetics, mechanism and thermodynamics studies of As(III) adsorption from aqueous solution using iron impregnated used tea. Desalin. Water Treat., 104, 135-148.
- MAITI A., S. DASGUPTA, J.K. BASU and S. DE (2007). Adsorption of arsenite using natural laterite as adsorbent. Sep. Purif. Technol., 55, 350-359.
- MAITI A., J.K. BASSU and S. DE (2010). Development of a treated laterite for arsenic adsorption: Effects of treatment parameters. Ind. Eng. Chem. Res., 49, 4873-4886.
- MAJI S.K., A. PAL, T. PAL and A. ADAK (2007). Modeling and fixed bed column adsorption of As (III) on laterite soil. Sep. Purif. Technol., 56, 284-290.
- MAJI S.K., A. PAL and T. PAL (2008). Arsenic removal from real-life ground water by adsorption on laterite soil. J. Hazard. Mater., 151, 811-820.
- MEILLON S. (1996). Étude des nouvelles propriétés de la magnétite et de l’hématite après transformation par irradiation et par mécanosynthèse. Thèse de doctorat, Univ. Paris XI Orsay, Univ. Paris Sud, France, 224 p.
- MEROLA R.B., T.T. HIEN, D.T.T. QUYEN and A. VENGOSH (2015). Arsenic exposure to drinking water in the Mekong delta. Sci. Total Environ., 511, 544-552.
- MOHAN D. Jr. and C.U. PITTMAN (2007) Arsenic removal from water/wastewater using adsorbents: a critical review. J. Hazard. Mater., 142, 1-53.
- MOSTAFAPOUR F.K., E. BAZRAFSHAN, M. FARZADKIA and S. AMINI (2013). Arsenic removal from aqueous solutions by Salvadora persica stem ash. J. Chem., 2013, 1-8.
- NEMADE P.D., A.M. KADAM and H.S. SHANKAR (2009). Adsorption of arsenic from aqueous solution on naturally available red soil. J. Environ. Biol., 30, 499-504.
- OCAMPO-PEREZ R., M.M. ABDEL DAIEM, J. RIVERA-UTRILLA, J.D. MENDEZ-DIAZ and M. SANCHEZ-POLO (2012). Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. J. Colloid Interface Sci., 385, 174-182.
- OFOMAJA A.E. (2010). Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Biores. Technol., 101, 5868-5876.
- OUEDRAOGO W.K.I., E. PEHLIVAN, H. TRAN, L.Y. BONZI-COULIBALY, D. ZACHMANN, and M. BAHADIR (2015). Synthesis of iron hydroxide-coated rice straw (IOC-RS) and its application in arsenic (V) removal from water. J. Water Health., 13, 726-736.
- PEHLIVAN E., T.H. TRAN, W.K.I. OUEDRAOGO, C. SCHMIDT, D. ZACHMANN and M. BAHADIR (2013). Removal of As(V) from aqueous solutions by iron-coated rice husk. Fuel Process. Technol., 106, 511-517.
- RAUL P.K., R.R. DEVI, I.M. UMLONG, A.J. THAKUR, S. BANERJEE and V. VEER (2013). Iron oxide hydroxide nanoflower assisted removal of arsenic from water. Mater. Res. Bull., 49, 360-368.
- SANOU Y., S. PARE, N.T.T. PHUONG and N.V. PHUOC (2016a). Experimental and kinetic modelling of As(V) adsorption on Granular Ferric Hydroxide and laterite. J. Environ. Treat. Tech., 4, 62-70.
- SANOU Y., S. PARE, G. BABA, N.K. SEGBEAYA and L.Y. BONZI-COULIBALY (2016b). Removal of COD in wastewaters by activated charcoal from rice husk. J. Water Sci., 29, 265-277.
- SANOU Y., S. PARE, N.T.T. PHUONG and N.V. PHUOC (2017). Arsenic removal from groundwater using filtering through Ferromagnetic Carbon. Proceedings of the Experts Workshop, Cuvillier Publisher Verlag Göttingen, Germany, pp. 93-103.
- SHAHID M.K., P. SAN and Y.G. CHOI (2019). Evaluation of arsenate adsorption efficiency of mill-scale derived magnetite particles with column and plug flow reactors. J. Water Process Eng., 28, 260-268.
- SHANKAR S. and U. SHANKER (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J., 2014, 1-18.
- SINGH T.S. and K.K. PANT (2004). Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Sep. Purif. Technol., 36, 139-147.
- SMEDLEY P.L., J. KNUDSEN and D. MAIGA (2007). Arsenic in groundwater from mineralized Proterozoic basement rocks of Burkina Faso. Appl. Geochem., 22, 1074-1092.
- SOME I.T., A.K. SAKIRA, M. OUEDRAOGO, T.Z. OUEDRAOAGO, A. TRAORE, B. SONDO and P.I. GUISSOU (2012). Arsenic levels in tube-wells water, food, residents’ urine and the prevalence of skin lesions in Yatenga Province, Burkina Faso. Interdiscip. Toxicol., 5, 38-41.
- SU C. and R. PULS (2001). Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol., 35, 1487-1492.
- TAWABINI B.S., S.F.A. AL-KHALDI, M.M. KHALED and M.A. ATIEH (2011). Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J. Environ. Sci. Health A, 46, 215-223.
- THAJEEL A.S., A.Z. RAHEEM and M.M. AL-FAIZE (2013). Production of activated carbon from local raw materials using physical and chemical preparation methods. J. Chem. Pharm. Res., 5, 251-259.
- THIRUNAVUKKARASU O.S., T. VIRARAGHAVAN and K.S. SUBRAMANIAN (2003). Arsenic removal from drinking water using iron-oxide coated sand. Water Air Soil Pollut., 142, 95-111.
- THIRUNAVUKKARASU O.S., T. VIRARAGHAVAN, K.S. SUBRAMANIAN, O. CHAALAL and M.R. ISLAM (2005). Arsenic removal in drinking water: impacts and novel removal technologies. Energy Sources, 27, 209-219.
- US ENVIRONMENTAL PROTECTION AGENCY (USEPA) (2001). National primary drinking-water regulations: Arsenic and clarifications to compliance and new source contaminants monitoring. US Environmental Protection Agency, US Code of Federal Regulations, 66 FR 6975, pp. 6976-7066.
- WEBER W.J. and J.C. MORRIS (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE, 89, 31-60.