Résumés
Abstract
Solutions to the Richards equation for water flow in variably saturated porous media are the focus of this paper. Working with field conditions, the extreme variability and complexity of soil, initial and boundary conditions can make the flow problem difficult to solve. This paper proposes to improve the computational efficiency of the mixed hybrid finite element (MHFE) method coupled with the variables transformation. The transform variables were introduced in order to simulate problems with convergence difficulty attributed to the presence of sharp wetting fronts. Furthermore, for better convergence behaviour, a technique that switches between the mixed-form and the pressure-head based form of the Richard’s equation was applied. Special attention was given to the top boundary conditions dealing with ponding or evaporation problems. In order to avoid non-physical oscillation problems, a mass condensation scheme was implemented in the model. Performance indicators in time and error of different options of the numerical model are defined, analyzed and classified. Thus, for each test case, a suitable numerical method that identifies which form of the Richards equation is best suited, the relevance of the switching technique as well as the utility of the transformation of the primary variable is possible. The results for the 1D Numerical test cases that have been performed matched those from the literature results. For evaporation and infiltration problem’s, the number of iterations needed to get the solution decrease when using the method of transformed pressure. Finally, knowing the soil heterogeneity, initial and boundary conditions, an agglomerative hierarchical clustering allows to analyze the need or not to transform variables and to use other options.
Key words:
- Modeling,
- numerical method,
- porous media,
- Richards equation,
- unsaturated,
- variables transformation
Résumé
Cet article est une contribution à la résolution numérique des écoulements en milieux poreux variablement saturés. La grande variabilité et la complexité des caractéristiques des sols, des conditions initiales et des conditions aux limites rendent les problèmes d’écoulements en milieu poreux difficiles à résoudre dans les limites acceptables de précision et de temps de calcul numérique. De nombreux efforts ont été consacrés dans la littérature récente sur le développement de solutions numériques. Ce papier propose d’améliorer l’efficacité de calcul de la méthode des éléments finis mixtes hybrides couplée à la transformation des variables. La transformation de variables est introduite dans le but de résoudre les difficultés de convergence dues à l’avancée d’un front raide de saturation en eau au sein du milieu poreux. Une attention particulière est portée aux conditions de saturation en eau proche de la surface du sol, telle la présence de flaques d’eau ou les phénomènes d’évaporation. Dans le but d’éviter des oscillations non physiques, un schéma de condensation de la masse a été implémenté, ainsi qu’une technique de basculement permettant de passer de la forme mixte de l’équation de Richards à la forme en pression uniquement. Des indicateurs de performances en temps et précision de calcul sont définis, analysés et classifiés. En conséquence, les options numériques optimales sont identifiées pour chaque cas testé. Par ailleurs, les résultats obtenus à l’aide des cas tests monodimensionnels tiennent très bien la comparaison avec ceux de la littérature. Connaissant l’hétérogénéité d’un sol, les conditions initiales et aux limites du domaine d’étude, une analyse par partitionnement des données propose de déterminer dans quels cas la transformée des variables ou les techniques de basculement entre les différentes formes de l’Equation de Richards sont adaptées.
Mots clés:
- Équation de Richards,
- modélisation,
- méthodes numériques,
- milieux poreux,
- non saturés,
- transformation de variables
Parties annexes
References
- ARNOLD D.N. and F. BREZZI (1985). Mixed and non conforming finite element methods: Implementation, postprocessing and error estimates. Math. Mod. and Num. Anal., 19, 7-32.
- BELFORT B. (2006). Modélisation des écoulements en milieux poreux non saturés par la méthode des éléments finis mixtes hybrids. Ph.D. thesis, University Louis Pasteur, Strasbourg, France, 239 p.
- BELFORT B. and F. LEHMANN (2005). Comparison of equivalent conductivities for numerical simulation of one-dimensional unsaturated flow. Vadose Zone J., 4, 1191-1200.
- BERKOWITZ B (2002). Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour., 25, 861-884.
- CELIA M.A., E.T. BOULOUTAS and R.L. ZARBA (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res., 26, 1483-1496.
- CHAVENT G. and J. JAFFRE (1986). Mathematical models and finite elements for reservoir simulation. Studies in Mathematics and its applications. North Holland, Amsterdam.
- CHAVENT G. and J.E. ROBERTS (1989). A unified physical presentation of mixed, mixed-hybrid finite elements and usual finite differences for the determination of velocities in waterflow problems. Rapports de Recherche 1107. Programme 7. Calcul Scientifique, Logiciels Numériques et Ingénierie Assistée. INRIA, Rocquencourt.
- COPPOLA A., H.H. Gerke, A. COMEGNA, A. BASILE and V. COMEGNA (2012). Dual-permeability model for flow in shrinking soil with dominant horizontal deformation. Water Resour. Res. DOI: 10.1029/2011WR011376
- DIERSCH H.J.G. and P. PERROCHET (1999). On the primary variable switching technique for simulating unsaturated-saturated flows. Adv. Water Resour., 23, 271-301.
- EL-KADI A.I. and G. Ling (1993). The Courant and Peclet number criteria for the numerical solution of the Richards equation. Water Resour. Res., 29, 3485-3494.
- EISENSTAT S.C (1981). Efficient implementation of a class of preconditioned conjugate gradient methods. SIAMS J. Sci. Stat. Comput., 2, 1-4.
- FAHS M., A. YOUNES and F. LEHMANN (2009) . An easy and efficient combination of the Mixed Finite Element Method and the Method of Lines for the resolution of Richards Equation. Environ. Modell. Softw., 24, 1122-1126.
- FARTHING M.W., C.E. KEES and C.T. MILLER (2003). Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv. Water Resour., 26, 373-394.
- HAO X., R. ZHANG and A. KRAVCHENKO (2005). A mass-conservative switching method for simulating saturated-unsaturated flow. J. Hydrol., 311, 254-265.
- HILLEL D (1980). Fundamentals of soil physics. Academic Press, New York, 413 p.
- HUANG K., B.P. MOHANTY and M.Th. VAN GENUCHTEN (1996). A new convergence criterion for the modified Picard iteration method to solve the variably saturated flow equation. J. Hydrol., 178, 69-91.
- IPPISCH O., H.J. VOGEL and P. Bastian (2006). Validity limits for the van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789.
- JOEKAR-NIASAR V. and S.M. HASSANIZADEH (2012). Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review. Crit. Rev. Env. Sci. Tec., 42, 1895-1976.
- KAVETSKI D., P. BINNING and S.W. SLOAN (2001). Adaptative time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation. Adv. Water Resour., 24, 595-605.
- KÖHNE J.M., S. KÖHNE and J. SIMŮNEK (2009). A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol., 104, 4-35.
- KOSUGI K (2008). Comparison of three methods for discretizing the storage term of the Richards equation. Vadose Zone J., 7, 957-965.
- MOUSAVI NEZHAD, M., A.A. JAVADI and F. ABBASI (2011). Stochastic finite element modelling of water flow in variably saturated heterogeneous soils. Int. J. Numer. Anal. Met., 35, 1389-1408.
- MOSÉ R., P. SIEGEL, P. ACKERER and G. CHAVENT (1994). Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity? Water Resour. Res., 30, 3001-3012.
- NAYAGUM D. (2001). Simulation numérique de la pollution du sous-sol par les produits pétroliers et dérives : Application au cas d’un écoulement diphasique monodimensionnel, Ph.D. Thesis, University Louis Pasteur, Strasbourg, France.
- PAN L. and P.J. WIERENGA (1995). A transformed pressure head-based approach to solve Richard’s equation for variably saturated soils. Water Resour. Res., 31, 925-931.
- RAVIART P.A. and J.M. Thomas (1977). A mixed finite method for the second order elliptic problems. pp. 292-315. In: Galligani I., Magenes, E., (ed.). Mathematical aspects of the finite element methods, Lecture Notes in Math 606, Springer, New York.
- REES I., I. MASTERS, A.G. MALAN and R.W. LEWIS (2004). An edge-based finite volume scheme for saturated-unsaturated groundwater flow. Comput. Met. Appl. M., 193, 4741-4759.
- RICHARDS L.A (1931). Capillary conduction of liquids through porous medium. Physics, 1, 318-333.
- SERRANO S.E (2004). Modeling infiltration with approximate solutions to Richard's equation. J. Hydrol. Eng., 9, 421-432.
- SHAHRAIYNI H.T. and B.A. ASHTIANI (2009). Comparison of finite difference schemes for water flow in unsaturated soils. Int. J. Mech. Ind. Aerosp. Eng., 3, 10-14.
- ŠIMŮNEK J., M.Th. VAN GENUCHTEN and M. ŠEJNA (2005). The HYDRUS-1D Software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Version 3.0. HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA.
- TIAN, F. and H. HU (2007). Numerical model of Richard's equation based on an ordinary differential equation solver. Qinghua Daxue Xuebao/J. Tsinghua Univ., 47, 785-788.
- TOCCI M.D., C.T. Kelley and C.T. Miller (1997). Accurate and economical solution of the pressure-head form of Richards equation by the method of lines. Adv. Water Resour., 20, 1-14.
- VAN DAM J.C. and R.A. Feddes (2000). Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol., 223, 72-85.
- VANDERBORGHT J., R. KASTEEL, M. HERBST, M. JAVAUX, D. THIERY, M. VANCLOOSTER, C. MOUVET and H. VEREECKEN (2005). A set of analytical benchmarks to test numerical models of flow and transport in soils. Vadose Zone J., 4, 206–221.
- WANKO A., G. TAPIA, R. MOSÉ and C. GREGOIRE (2009). Adsorption distribution impact on preferential transport within horizontal flow constructed wetland (HFCW). Ecol. Model., 220, 3342-3352.
- WANKO A., G. TAPIA, R. MOSE and G. GREGOIRE (2011). A new empirical law to accurately predict solute retention capacity within horizontal flow constructed wetlands. Ecol. Eng., 37, 636-643.
- YOUNES A., R. MOSE, P. ACKERER and G. CHAVENT (1999). A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J. Comput. Phys., 149, 148-167.
- YOUNES A., P. ACKERER and F. LEHMANN (2006). A new mass lumping scheme for the mixed hybrid finite element method. Int. J. Numer. Method. Eng., 67, 89-107.