Résumés
Résumé
Les carbonates de fer, de manganèse, de calcium et de magnésium précipités en solution des lacs sont documentés. Indicateurs de climat et de variation des caractéristiques chimiques des lacs, ils sont de plus en plus recherchés dans les sédiments. Souvent incomplets, les mécanismes de leur précipitation dans la colonne d’eau du lac et dans les eaux interstitielles sont reprécisés dans cette étude. D’après la littérature, la sidérite et la rhodochrosite précipitent en milieu réducteur saturé de carbonate de fer et de carbonate de manganèse respectivement. Ces prévisions sont confirmées dans cette étude, le potentiel redox étant un paramètre déterminant pour la précipitation du carbonate de fer. Toutefois, la littérature ne décrit pas suffisamment l’origine (géochimique ou biologique) des éléments constitutifs des solides carbonatés lacustres, encore moins les phénomènes qui stabilisent ces derniers ou les rendent vulnérables (dissolution). Cette étude apporte plus de précisions à l’endogènèse de ces carbonates, l’origine de leurs éléments constitutifs étant prise en compte. Elle montre que le caractère de l’eau (agressif ou incrustant) pourrait avoir un impact considérable sur le devenir de ces carbonates. Ainsi un dégazage forcé d’un lac rendrait ses eaux incrustantes, caractère idéal pour la précipitation des carbonates, mais néfaste à la stabilité des strates qui changent de composition après précipitation d’espèces chimiques. Par conséquent, tout projet de dégazage de lac devrait prendre en considération ce paramètre (caractère de l’eau) dans sa conception, sa mise en oeuvre et son exploitation.
Mots-clés:
- Lac,
- colonne d’eau,
- solides carbonatés,
- éléments constitutifs,
- indicateurs climatiques,
- mécanismes
Abstract
Carbonates that precipitate in the water column of the lakes are documented: these include siderite, rhodochrosite, calcite, magnesite, and dolomite. As climate indicators and indicators of changes in chemical characteristics of lakes, they are increasingly monitored in sediments. Often incomplete, the mechanisms of their precipitation in the water column of the lake and in pore waters are reviewed in this study. According to the literature, siderite and rhodochrosite precipitate in reducing environments saturated with iron carbonate and manganese carbonate respectively. These predictions are confirmed in this study, the redox potential being a key parameter for the precipitation of iron carbonate. However, the literature does not sufficiently describe the origin (geochemical or biological) of lacustrine solid carbonate components or the phenomena that stabilize or make them vulnerable (dissolution). This study provides further details on the endogenesis of these carbonates by taking account of the origin of their components. This study also shows that the character of the water (aggressive or encrusting) could have a significant impact on the fate of these carbonates. Thus, degassing a lake might make water encrusting; this encrusting character of water is ideal for the precipitation of carbonates, but detrimental to the stability of layers whose composition changes after precipitation of chemical species. Therefore any lake degassing project should consider this parameter (aggressive or encrusting nature of the water) in its design, implementation and operation.
Keywords:
- Lake,
- water column,
- solid carbonates,
- components,
- climate indicators,
- mechanisms
Parties annexes
Références bibliographiques
- BAHRIG, B. (1985). Paleo-environment information from deep water siderite (Lake of Laach, west Germany). Dans: Lacustrine Petroleum source rocks. FLEET, A.J., K. KELTS et M.R. TALBOT (Editeurs), Geol. Soc. Spec., 40, 153-158.
- BAHRIG, B. (1989). Stable isotope composition of siderite as an indicator of the paleoenvironmental history of oil shale Lakes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 70,139-151.
- BALISTRIERI, L.S., J.W. MURRAY et B. PAUL (1992). The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol. Oceanogr., 37, 510-528.
- BEAUSOLEIL, M. et J. BRODEUR (2007). Le plomb dans l’eau potable sur l’île de Montréal. État de situation et évaluation des risques à la santé. Agence de la santé et des services sociaux de Montréal, Québec, 59 p.
- BERNARD, A.et R.B. SYMONDS (1989). The significance of siderite in the sediments from Lake Nyos, Cameroon. J. Volcan. Geotherm. Res., 39,187-194.
- BOLLINGER, J.C., V. DELUCHAT, J.Y. GAL, N. GACHE and Y. FOVET (1988). Repartition of various soluble and insoluble species in supersaturated solutions. Pure &Appl. Chem., 70, 1921-1924.
- BRUNO, J., P. WERSIN et W. STUMM (1992). On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3(s) at 25°C and 1 atm total pressure. Geochim. Cosmochim. Acta, 56, 1149-1155.
- CALLENDER, E. et L. GRANINA (1992). Transition metal geochemistry of sedimentary pore fluids associated with hydrothermal activity in Lake Baikal. Dans: Water-Rock Interaction. KHARAKA Y.K. et A.S. MAEST (Editeurs), Brookfiel, Vt, pp. 621-626.
- CALVERT, S.E. et T.F. PEDERSON (1996). Sedimentary geochemistry of manganese: Implications for the environment of the formation of manganiferous black shales. Econ. Geol., 91, 36-47.
- CAROTHERS, W.W., L.H. ADAMI et R.J. ROSENBAUER (1988). Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochim. Cosmochim. Acta, 52, 2445-2450.
- CANFIELD, D.E., R. RAISWELL et S. BOTTRELL (1992). The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292, 659-683.
- COLEMAN, M.L. et R. RAISWELL (1993). Microbial mineralization of organic matter: Mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals. Phil. Trans. R. Soc. Lond. A., 344, 69-87.
- CÖLFEN, H. (2003). Precipitation of carbonates: recent progress in controlled production of complex shapes: selfassembly. Current opinion in Colloid and Interface Science, 8, 23-31.
- CURTIS, C.D.et M.L. COLEMAN (1986). Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences. Dans: Roles of Organic Matter in Sediment Diagenesis. GAUTIER D.L. (Editeur), SEPM Special Publication, 38, pp. 23-33.
- HONGVE, D. (1997). Cycling of iron, manganese and phosphate in a meromictic lake. Limnol. Oceanogr., 42, 635-647.
- DAVISON, W. (1993). Iron and manganese in lakes. Earth Sci. Rev. 34, 119-163.
- DAY, E.H. (1963). The chemical elements in nature. George C. Harrap & Co, London, U.K., 372 p.
- DEAN, W.E. (1999). The carbon cycle and Biogeochemical Dynamics in lake sediments. J. Paleolimnology, 21, 375-393.
- DEAN, W.E. (2009). Endogenic carbonate sediments in Bear Lake, Utah and Idaho over the last two glacial-interglacial cycles. Geol. Soc. America, special paper, 450, 169-196.
- DEAN, W.E. et L.A. DONER (2011). Precipitation, Isotopic composition of endogenic carbonate, and vegetation history in a lake-Fen complex in northwestern Minnesota, open –File Report -1106. U.S. Geological Survey, Reston, Virginia.
- DEAN, W.E., B. NEFF, D. ROSENBERRY, T.C. WINTER et R. PARKHURST (2003). The significance of ground water to the accumulation of iron and manganese in the sediments of two hydrologically distinct lakes in north-central Minnesota – A geological perspective. Ground Water, 441, 951-963.
- DEAN, W.E. et A. SCHWALB (2002). The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct hardwater lakes in northwestern Minnesota. J. Sedimentary Res., 72, 416-431.
- DELIAN, F., L. TIEBING et Y. JIE (1992). The process of formation of manganese carbonate deposits hosted in black shale series. Econ. Geol., 87, 1419-1429.
- DUAN, W.M., D.B. HEDRICK, K. PYE, M.L. COLEMAN et D.C. WHITE (1996). A preliminary study of the geochemical and microbiological characteristics of modern sedimentary concretions. Limol. Oceanogr., 41,1404-1414.
- EFFLER, S.W. (1984). Carbonate equilibria and the distribution of inorganic carbon in Saginan Bay. J. Great Lakes Res., 10, 3-14.
- EFFLER, S.W. et D.L. JOHNSON (2007). Calcium carbonate precipitation and turbidity measurements in Otisco Lake, New York. J. Am. Water Resour. Assoc., 23, 73-79.
- EHRENREICH, A. et F. WIDDEL (1994). Anaerobic oxidation of ferrous iron by purple bacteria, a new-type of phototrophic metabolism. Appl. Environ. Microb., 60, 4537-4526.
- ELFIL, H. et H. ROQUES (2001). Role of hydrate phases of calcium carbonate on the scaling phenomenon. Desalination, 137, 177.
- EMERSON, S. (1976). Early diagenesis in anaerobic lake sediments: Chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta, 40, 925-934.
- EUGSTER, H.P. et L.A. HARDIE (1978). Saline lakes, Dans : Lakes : Chemistry, geology, Physics. A. LEMAN (Editeur), Springer-Verlag, New York, pp. 237-294.
- FORCE, E.R. et J.B. MAYNARD (1991). Manganese : Syngenetic deposits on the margin of anoxic basins. Rev. Econ. Geol., 5, 147-157.
- FRAKES, L.A. et B.R. BOLTON (1992). Effects of Ocean Chemistry, sea level, and climate on the formation of primary sedimentary manganese ore deposits. Econ. Geol., 87, 1207-1217.
- FREDERICHS, T., T. V. DOBENECK, U. BLEIL et M.J. DEKKERS (2003). Towards the identification of siderite rhodochrosite and vivianite in sediments by their low-temperature magnetic properties. Phys. Chem. Earth, 28, 669-679.
- GAL, J.Y., J.C. BOLLINGER, H. TOLOSA, N. GACHE (1996). Calcium carbonate solubility: a reappraisal of scale formation and inhibition. Talanta, 43, 1497-1509.
- GAL, J.Y., Y. FOVET et N. GACHE (2002). Mechanisms of scale formation and carbon dioxide partial pressure influence. Part II. Application in the study of mineral waters of reference. Water Res., 36, 764-73.
- GLASBY, G.P. et H.D. SCHULTZ (1999). EH, pH diagrams for Mn, Fe, Co, Ni, Cu and As under sea-water conditions: applications of two new types of EH, pH diagrams to the study of specific problems in marine geochemistry. Aquat. Geochem, 5, 227-248.
- GLENN, M.M. (2008). Eocene age fossilized filamentous bacteria: New evidence suggesting a bacterial genesis of siderite in the Green River formation, Wyoming. 28th Oil shale symposium Colorado School of Mines, 7 p.
- GREEN, J.W., B.R. STAGE, B.J. BRATINA, S. WAGERS, A. PRESTON, K. O’BRYAN, J. SHACAT et S. NEWELL (2004). Nickel, copper, zinc and cadmium cycling with manganese in Lake Vanda (Wright valley, Antarctica). Aquat. Geochem.,10, 303-323.
- GREINERT J., G. BOHRMANN et E. SUESS (2001). Gas hydrate-associated carbonates and methane-venting at hydrate Ridge: classification, distribution, and origin of authigenic lithologies. Dans: Natural gas hydrates: Occurrence, Distribution and Detection. PAULL, C.K. et W.P. DILLON (Editeurs), Geophys. Monogr. Ser., 124, 99-113, AGU, Washington, D.C.
- HALBWACHS, M., J.C. SABROUX, J. GRANGEON, G. KAYSER, J.C TOUCHON-DANGUY, A. FELIX, J.C. BEARD, A. VILLEVIEILLE, G. VITTER, P. RICHON, A. WÜEST et J. HELL (2004). Degassing the “killer lakes “ Nyos and Monoun, Cameroon. EOS Trans. AGU85, 281-285.
- HOUSE, W.A. (1984). The kinetics of calcite precipitation and related processes. Freshwater Biol. Assoc. Annu. Rep., Ambleside, 52, 75-90.
- HSÜ, K.J. et K. KELTS (1978). Late Neogene sedimentation in the Black sea. Dans: Modern and Ancient Lake sediments. MATTER, A. et M.E. TUCKER (Editeurs), Oxford (Blackwell Scientific), IAS Spec. Publ., pp.129-145.
- INTERNATIONAL REFERENCE GROUP (1977). Atmospheric loadings of the Lower Great Lakes and the Great Lake drainage basin. The International Reference Group on Great Lakes pollution from Land Use Activities, 79 p.
- JENKYNS, H.C., B. GECZY et J.D. MARSHALL (1991). Jurassic manganese carbonates of Central Europe and the early Toarcien event. J. Geol., 137-149.
- JIMENEZ-LOPEZ, C. et C.S. ROMANEK (2004). Precipitation kinetics and carbon partitioning of inorganic siderite at 25°C and 1 atm. Geochim. Cosmochim. Acta, 68, 557-571.
- JOHANESS, W. et D. PUHAN (1971) The calcite-aragonite transition, reinvestigated. Mineral. Petrol., 31, 28-38.
- JOHNSON, M.L. (1990). Ferrous carbonate precipitation kinetics. A temperature ramped approach. PhD. Rice University, Houston, Texas,139 p.
- JOHNSON, J.W., E.H. OELKERS et H.C. HELGESON (1992). SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C: Computers & Geosciences, 18, 899-947.
- KAMGAING, T. (2003 a). Étude comparée du caractère des eaux de deux lacs de cratère à risque majeur pour l’environnement : le Lac Nyos et le Lac Monoun Ouest-Cameroun. Tribune de l’eau, 56, 52-59.
- KAMGAING, T. (2003 b). Caractère agressif des eaux du Lac Nyos. Impact du dégazage de l’hypolimnion et suggestions. Tech. Sci. Meth.(TSM), 10, 59-65.
- KAPPLER, A. et D.K. NEWMAN (2004). Formation of Fe3+-minerals by Fe2+-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta, 68, 1217-1226.
- KAPPLER, A., K.L. STRAUB (2005). Geomicrobiological cycling of iron. Dans: Molecular Geomicrobiology. BANFIELD, J.F., J. CERVINI-SILVA et K.H. NEALSON (Editeurs), 59, pp. 85-108.
- KAWASHIMA, M., T. TAKAMATSY et M. KOYAMA (1988). Mechanisms of precipitation of manganese (II) in Lake Biwa, a fresh water lake. Water Res., 22, 613-618.
- KELTS, K. et K.J. HSÜ (1978). Freshwater carbonate sedimentation. In: Lakes – chemistry, geology, physics. LERMAN A. (Editeur), Springer, pp. 295-323.
- KHIM, B.K., K.S. CHOI, Y.A. PARK et J.K. OH (1999). Occurrence of authigenic siderites in the early Holocene Coastal deposit in the west coast of Korea: an indicator of depositional environment. Geosci. J., 3,163-170.
- KLING, G.W., M.A. CLARK, H.R. COMPTON, J.D. DEVINE, W.C. EVANS, A.M. HUMPHREY, E.J. KOENISBERG, J.P. LOCKWOOD, M.L. TUTTLE et G.N. WAGNER (1987). The 1986 Lake Nyos gaz disaster in Cameroon, West-Africa. Science, 236, 169-175.
- KLING, G.W., W.C. EVANS, G. TANYILEKE, M. KUSAKABE, T.OHBA, Y. YOSHIDA et J.V. HELL (2005). Degassing Lakes Nyos and Monoun: defusing certain disaster. Proc. Natl. Acad. Sci USA, 102, 14185-14190.
- KONHAUSER, K.O. (1998). Diversity of bacterial iron mineralization. Earth Sci. Rev., 43, 91-121.
- KONOVALOV, S., A. SAMODUROV, T. OGUZ et L. IVANOV (2004) Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment. Deep-Sea Research I, 21, 2027-2045.
- KRYLOV, A., O. KHLYSTOV, T. ZEMSKAYA, H. MINAMI, A. HACHIKUBO,Y. NUNOKAWA, M. KIDA, H. SHOJI, L. NAUDTS, J. POORT et T. POGODAEVA (2008). First discovery and formation process of authigenic siderite from gas-hydrate-bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia. Geophys. Res. Lett., 35, L05405 (6 p.).
- KULIK, D.A., M. KERSTEN, U. HEISER et T. NEUMANN (2000). Application of Gibbs energy minimization to model early-diagenetic solid-solution aqueous-solution equilibria involving authigenic rhodochrosites in anoxic Baltic Sea sediments. Aquat. Geochem., 6, 147-199.
- KUSAKABE, M., G.Z.TANYILEKE, S.A. McCORD et S.G. SCHLADOW (2000). Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation. J.Volcanol.Geotherm.Res., 97, 241-260.
- KUSAKABE, M., T. OHBA, ISSA, Y. YOSHIDA, H. SATAKE, T. OHIZUMI, W.C. EVANS, G. TANYILEKE et G.W. KLING (2008). Evolution of CO2 in Lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem. J. 42, 93-118.
- LANGMUIR, D. (1997) Aqueous Environmental Geochemistry. Prentice Hall, Englewood Cliffs, New Jersey, 600 p.
- LAST, M.W. et P. DE DECKKER (1990). Modern and Holocene carbonate sedimentology of two saline volcanic maar lakes, Southern Australia. Sedimentology, 37, 967-981.
- LEBRON, I. et D.L. SUAREZ (1996). Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25°C and pH >7.5. Geochim. Cosmochim. Acta, 60, 2765-2776.
- LEGRAND, L. et G. POIRIER (1976). Chimie des eaux naturelles, Eyrolles, Paris, 312 p.
- LEIN, A.Y. (2004). Authigenic carbonate formation in the Ocean. Lithol. Miner. Resour. 39, 1-30.
- LEROY, P. (1994). Le plomb dans l’eau: origine et influence des caractéristiques des eaux transportées. Tech. Sci. Meth. (TSM), 3, 122-127.
- LEWIS, B.L. et W.M. LANDING (1991). The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res., 38(suppl. À), S773-S804.
- LIM, D.I., H.S. JUNG, S.Y. YANG et H.S. YOO (2004). Sequential growth of early diagenetic freshwater siderites in the Holocene coastal deposition, Korea. Sediment. Geol., 169, 107-120.
- LOVLEY, D.R. (1993). Dissimilatory Metal Reduction. Ann. Rev. of Microbiol., 47, 263-290.
- LOVLEY, D.R. (2004) Potential role of dissimilatory iron reduction in the early evolution of microbial respiration. Dans: Origins, Evolution and Biodiversity of Microbial life. SECKBACH J. (Editeur), pp. 299-313.
- MASON, L.M., A.R.HARRIS, C.M. BIRKETT, W.CUDLIP et C.E. RAPLEY (1991). Remote sensing of lakes for the proxy monitoring of climatic change. Proc. 16th Ann. Conf. Remote Sensing Society, pp. 314-324.
- MAYHEW, S.G. (1978). The redox potential of dithionite and SO2- from Equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Eur. J. Biochem, 85, 535-547.
- MIZANDRONTSEV, I.B. (1975). About geochemistry of the pore solutions (in Russian). Dans: Dynamic of the Baikal Depression. GALAZii G.I. et Y.P. PARMUZIN (Editeurs), Nanka, Novosibirsk, Russia, pp. 203-231.
- MORAD S. et I.S. Al-AaSM (1997). Conditions of Rhodochrosite-nodule formation in Neogene-Pleistocene deep-sea sediments: Evidence from O, C and Sr isotopes. Sediment. Geol., 114, 295-304.
- MORSE, W. J., S.R. ARVIDSON et A. LÜTTGE (2007). Calcium carbonate formation and dissolution. Chem. Rev. 107, 342-381.
- MORTIMER, R.J.G. et M.L. COLEMAN (1997). Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochim. Cosmochim. Acta, 61, 1705-1711.
- MOORE, S.E., J.R.E. FERRELL et P. AHARON (1992). Diagenetic siderite and other ferroan carbonates in a modern subsiding marsh sequence. J. Sediment. Petrol., 62, 357-366.
- MOZLEY, P.S. et W.W. CAROTHERS (1992). Elemental and isotopic composition of siderite in the Kupanuk Formation, Alaska: effect of microbial activity and water/sediment interaction on early pore-water chemistry. J. Sediment. Petrol., 64, 681-692.
- MÜLLER, B., Y. WANG et B. WEHRLI (2006). Cycling of calcite in hard water lakes of different trophic states. Limnol. Oceanogr., 51, 1678-1688.
- MÜLLER, G., IRION et U. FÖRSTNER (1972). Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturewissenschaften, 59, 158-164.
- MUNCH, J.C. et J.C.G. OTTOW (2010). Réduction bactérienne des oxydes ferriques amorphes et cristallisés. Association Française pour l’Étude du Sol, 205-215.
- MURPHY, T.P., K.J. HALL et I. YESAKI (1983). Coprecipitation of phosphate with calcite in a naturally eutrophic lake . Limnol. Oceanogr., 28, 58-69.
- MURRAY, J.W., L.A. CODISPOTI et G.E. FRIEDERICH (1995). Oxidation-reduction environments. The suboxic zone in the Black Sea. Dans: Aquatic Chemistry: Interfacial and Interspecies Processes. HUANG, C.P., C.R. O’MELIA, J.J. MORGAN (Editeurs), ACS Advances in Chemistry Series, 244, pp.157-176.
- NAN, Z., Z. SHI, M. QIN, W. HOU et Z. TAN (2007). Formation process and Thermodynamic properties of calcite. Chin. J. Chem. 25, 592-595.
- NEALSON, K.H.et D. SAFFARINI (1994). Iron and manganese in anaerobic respiration, environmental significance, physiology and regulation. Annual Review of Microbiology, 48, 311-343.
- NIA P., V.B.K. KAMGANG, L.N. SIGHA, C.W. EVANS et G. TANYILEKE (2009). Fonctionnement hydrogéochimique du Lac Nyos avant son dégazage. Syllabus Review, 1, 16-27.
- NEUMANN, T., C. CHRISTIANSEN, S. CLASEN, K.C. EMERIS et H. KUNZENDORF (1997). Geochemical records of salt water inflows into the deep basins of the Baltic Sea. Cont. Shelf Res.,17, 95-115.
- NEUMANN, T., U. HEISER, M.A. LEOSSON et M. KERSTEN (2002). Early diagenetic processes during Mn-carbonate formation: evidence from the isotopic composition of authigenic Ca-rhodochrosites of the Baltic Sea. Geochim. Cosmochim. Acta, 66, 867-879.
- NEVIN, K.P. et D.R. LOVLEY (2002). Mechanisms for Fe3+ oxide reduction in sedimentary environments. Geomicrobiol. J., 19, 141-159.
- OGUZ, T., J.W. MURRAY et A. CALLAHAN (2001). Modeling redox cycling across the suboxic-anoxic interface zone in the Black Sea. Deep-Sea Res., 48, 761-787.
- OKITA, P.M. et W.C. SHANKS (1992). Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico and Tao Tiang, China. Chem. Geol., 99,139-164.
- PEARSON, M.J. (1979). Geochemistry of the Hepworth carboniferous sediment sequence and the origin of the diagenetic iron minerals and concretions. Geochim. Cosmochim. Acta, 43, 927-941.
- PIENITZ, R., I.R. WALTER et B.A. ZCEB (1992). Biomonitoring past salinity changes in an athalassic subartic lake. Int. J. salt lake Res., 1, 91-123.
- PISAPIA, C., M. CHAUSSIDON, C. MUSTIN et B. HUMBERT (2007). O and S isotopic composition of dissolved and attached oxidation products of pyrite by Acidithiobacillus ferroxidans : comparison with abiotic oxidations. Geochim. Cosmochim. Acta, 71, 2474-2490.
- PLUMMER, L.N., T.M.L. WIGLEY et D.L. PARKHURST (1978). The kinetics of calcite dissolution in CO2-water systems at 5-60 °C and 0.0-1.0 atm. CO2. Am. J. Sci., 278, 179-216.
- POURBAIX, M. (1963). Atlas d’Equilibres Electrochimiques à 25°C. Gauthier-Villars, Paris, 644 p.
- POSTMA, D. (1982). Pyrite and siderite formation on brackish and freshwater swamp sediments. Am. J. Sci., 282, 1151-1183.
- PYE, K. (1984). SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England. Mar. Geol., 56, 1-12.
- QUERALT, I., R. JULIA, F. PLANA et J.L. BISCHOFF (1997). A hydrous Ca-bearing magnesium carbonate from Playa lake sediments, Saline Lakes, Spain. Am. Mineral., 82, 812-819.
- RAJAN, S., F. MACKENZIE et C.R. GLENN (1996). A thermodynamic model for water column precipitation of siderite in the plio-pleistocene Black sea. Am. J. Sci., 296, 506-548.
- ROH, Y., C.L. ZHANG, H. VALI, R.J. LAUF, J. ZHOU et T.J. PHELPS (2003). Biogeochemical and environmental factors in Fe biomineralization : Magnetite and siderite formation. Clays Clay Miner. 51, 83-95.
- ROH, Y.,H. GAO, H. VALI, D.W. KENNEDY, Z.K. YANG, W. GAO, A.C. DOHNALKOVA, R.D. STAPLETON, J.W. MOON, T.J. PHELPS, J.K. FREDRICKSON et J. ZHOU (2006). Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-Reducing Bacterium shewanella sp. Strain PV-4. Appl. Environ. Microbiol.,72, 3236-3244.
- ROCA, J.R. et R. JULIA (1997). Late-Glacial and Holocene lacustrine sequence evolution based on ostracode assemblages in south-easten Spain. Geobios., 30, 823-830.
- RODO, X., A. F. COMIN, G. R. TENORIO et R. JULIA (2003). High-resolution saline lake sediments as enhanced tools for relating proxy paleolake records to recent climatic data series. Sedimentol. Geol., 148, 203-220.
- ROELS, J. et W. VERSTRAETE (2001). Biological formation of volatile phosphorus compounds. Biosci. Technol., 79, 243-250.
- ROMANEK, C.S., C.L. ZHANG, Y. LI, H. VALI, J. HORITA et D.R COLE (2003). Carbon and hydrogen isotope fractionations associated with dissimilatory iron-reducing bacteria. Chem. Geol. (Isot. Geosci. Sect.) 195, 5-16.
- ROMANEK, C.S., C. JIMENEZ-LOPEZ, R.A. NAVARRO, M. SANCHEZ ROMAN, N. SAHAI et M. COLEMAN (2009). Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochim. Cosmochim. Acta, 73, 5361-5376.
- ROSSMANN, R. (1980). Inorganic chemistry of particulate matter from the nearshore zone of Lake Michigan. J. Great Lakes Res., Int. Assoc. Great Lakes Res., 6, 348-352.
- SAPOTA, T., A. ALDAHAN et I.S. AL-AASM (2006). Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J. Paleolimnol., 36, 245-257.
- SCHMID, M., M. HALBWACHS et A. WÜEST (2006). Simulation of CO2 concentrations, temperature and stratification in Lake Nyos for different degassing scenarios. Geochem. Geophys. Geosyst., 7, Q06019.
- SHAOFENG, J., K. DO-GUN, K. JEONGHYUN et K. SEOK-OH (2010). Characterization of the biogenic Manganese oxides produced by pseudomonas putida Strain MnB1. Environ. Eng. Res. 15, 183-190.
- SHAPLEY, M., E. ITO, J. DONOVAN et D. ENGSTROM (2002). Endogenic carbonate sediment flux in lakes as indicator of Paleo-Groundwater recharge. American Geophys. Union, Fall Meeting, Abstract PP51A-0298.
- SHOW, N., S. MORAD et I.S. AL-AASM (2000). Origin of authigenic Mn-Fe carbonates and pore-water evolution in marine sediments: Evidence from Cenozoic strata of the Arctic Ocean and Norwegian-Greenland Sea (ODP Leg 151). J. Sediment. Res., 70, 682-699.
- SIGURDSSON, H., J.D. DEVINE, F.M. TCHOUA, T.S. PRESSER, M.K.W. PRINGLE et W.C. EVANS (1987). Origin of the lethal burst from Lake Monoun, Cameroon. J. Volcanol. Geotherm. Res., 31,1-16.
- SINGER, P.C. et W. STUMM (1970) The solubility of ferrous iron in carbonate-bearing waters. J. Am. Water Works Assoc., 62, 198-202.
- STABEL, H.H. (1986). Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae. Limnol. Oceanogr., 31, 1081-1093.
- STRAUB, K.L., M. BENZ, B. SCHINK et F. WIDDEL (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. and Environ. Microb., 62, 1458-1460.
- SCHELOBOLINA, E.S., C.G. VANPRAAGH et D.R. LOVLEY (2003). Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J., 20, 143-156.
- STEVENS, L.R., E. ITO et D.E.L. OLSON (2000). Relationship of Mn-carbonates in varved lake sediments to catchment vegetation in Big Watab Lake, MN, USA. J. Paleolim., 24,199-211.
- STRAUB, K.L. et B.E.E BUCHHOLZ-CLEVEN (1998). Enumeration and detection of anaerobic ferrous iron-oxidizing nitrate-reducing bacteria from diverse European sediments. Appl. Environ. Microb., 64, 4846-4856.
- STUCKI. J.W. (2006). Iron redox processes in clay minerals. Dans: Handbook of Clay Science. BERGAYA. F., G. LAGALY et B.G.K. THENG (Editeurs), Elsevier, Amsterdam.
- STUMM. W. et J.J. MORGAN (1996). Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd edition. John WILLY& Sons, Inc., New York, 1022 p.
- TEBO, B.M. (1991). Manganese(II) oxidation in the suboxic zone of the Black sea. Deep-Sea Research, 38 (Suppl. 2À), S883-S906.
- TELLER, J.T. et W.M. LAST (1990). Paleohydrological indicators in Playas and salt lakes, with examples from Canada, Australia and Africa. Palaeogeogr., Palaeoclimatol. Palaeoecol., 76, 215-240.
- TEUTSCH, N., M. SCHMID, B. MÜLLER, A.N. HALLIDAY, H. BÜRGMANN et B. WEHRLI (2009). Large iron isotope fractionation at the oxic-anoxic boundary in Lake Nyos. Earth Planet. Sci. Lett. 285, 52-60.
- UPPER LAKES REFERENCE GROUP (1976). The water of Lake Huron and Lake Superior, Vol. I, Summary and Recommendations: Report to the International Joint Commission, 236 p.
- WERSIN, P., L. CHARLET, R. KARTHEIN et W. STUMM (1989). From adsorption to precipitation: Sorption of Mn2+ on FeCO3(s). Geochim. Cosmochim. Acta, 53, 2787-2796.
- WHITICAR, M.J. (1999). Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane. Chem. Geol., 161, 291-314.
- WIDDEL, F., S. SCHNELL, S. HEISING, A. EHRENREICH, B. ASSMUS et B. SCHINK (1993). Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362, 834-836.
- ZHANG, C.L., H. VALI, C.S. ROMANEK, Y. ROH, S.K. SEARS et T.J. PHELPS (1998). Chemical and morphological characterization of siderite formed by iron reducing bacteria. Am. Mineral., 61,927-932.
- ZHANG, C.L., J. HORITA, D.R. COLE, J. ZHOU, D.R. LOVLEY et T.J. PHELPS (2001). Temperature-dependent oxygen and carbon isotope fractionation of biogenic siderite. Geochim. Cosmochim. Acta, 65, 2257-2271.
- ZHANG, G., H. DONG, H. JIANG, K.R. KUKKADAPU, J. KIM, D. EBERI et Z. XU (2009). Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. Am. Mineral., 94, 1049-1058.
- ZHAODONG, N., C. XIANGNA, Y. QIANQIAN, W. XIUZHEN et H. WANGUO (2008). Structure transition from aragonite to vaterite and calcite by the assistance of SDBS. J. Coll. I. Sc., 325, 331-336.
- ZODROW, E.L., P.C. LYONS et M.A. MILLWAY (1996). Geochemistry of autochthonous and hypautochthonous siderite –dolimite coalballs (Foord Seam, Bolsovian, upper carboniferous), Nova Scotia, Canada. Int. J. Coal Geol., 29, 199-216.