Résumés
Abstract
Little information is available comparing the influence of land use and precipitation on the control of phosphorus (P) and nitrogen (N) losses from agricultural watersheds in claypan soils. Eight watersheds with varying proportions of row-crop, pasture, forest, and grass filter strip condition were examined for three consecutive years to evaluate effects of land use and precipitation on P and N losses from row-cropped watersheds. Total P (TP) and total N (TN) losses were inversely related to the percentage of forest and pasture cover. Forest (n=2), pasture (n=3), row-crop (n=2), and row-crop grass filter strip (n=1) land use types had mean annual TP losses of 0.43, 0.90, 3.82 and 1.30 kg•ha-1•yr-1, respectively and mean annual TN losses of 2.02, 4.34, 29.25 and 12.31 kg•ha-1•yr-1, respectively. During the 3-year study, the respective land use types lost 0.36, 0.64, 13.99 and 7.26 kg NO3-N•ha-1•yr-1. Runoff events on row-cropped watersheds resulted in significantly greater TP, TN, and NO3-N losses than those from pastured and forested watersheds. Stream nitrate-N concentrations averaged 0.39, 0.50, and 2.56 mg•L-1 for forest, pasture, and row-crop land use types, respectively. During the study, 136% of the long-term average precipitation in 1998 caused significant nutrient losses in all watershed categories and the variability within a land use type was larger than in years with below long-term rainfall. The study results emphasize the incorporation of perennial vegetation such as vegetative buffers, grass/conservation reserve program areas, and grass filter strips or other perennial vegetation as a long-term option for effective control of nutrient losses in runoff from agricultural watersheds.
Keywords:
- buffers,
- corn-soybean,
- conservation practices,
- grass filter strips,
- riparian area
Résumé
Il y a peu d’information disponible sur les liens entre l’occupation des sols, la précipitation et le contrôle des pertes en phosphore (P) et en azote (N) des bassins versants ayant des sols aux horizons argileux. Pour cette étude, huit bassins caractérisés par différentes proportions de culture à interlignes, pâturage, forêt et conditions de bandes enherbées, ont été suivis sur une période de trois ans. Les pertes en P total (TP) et N total (TN) étaient inversement reliées au pourcentage d’occupation en forêt et en pâturage. Les occupations forêt (n=2), pâturage (n=3), cultures à interligne sans (n=2) et avec bandes enherbées (n=1), avaient respectivement des pertes annuelles moyennes de TP de 0,43, 0,90, 3,82, et 1,30 kg•ha-1•année-1 et de TN de 2,02, 4,34, 29,25 et 12,31 kg•ha-1•année-1. Au cours de cette étude de trois ans, les pertes en azote nitrate étaient respectivement de 0,36, 0,64, 13,99, et 7,26 kg N-NO3•ha-1•année-1. Les pertes résultant des événements de ruissellement sur les bassins de cultures à interlignes étaient plus considérables que celles sur les bassins caractérisés par la forêt et les pâturages. Les concentrations en azote nitrate dans les cours d’eau alimentés par les occupations forêt, pâturage et cultures à interlignes étaient respectivement de 0,39, 0,50, et 2,56 mg N-NO3•L-1. Au cours de l’étude, et ce en comparaison avec les années ayant reçu des précipitations inférieures à la moyenne à long terme, les précipitations de 1998 (136% de la moyenne à long terme) ont produit plus de pertes dans tous les types de bassins ainsi que de plus grandes variabilités pour chaque occupation. Les résultats de cette étude illustrent que l’intégration de couvertures végétales pérennes, telles que les bandes enherbées, les aires protégées enherbées et les voies enherbées ou autre végétation pérenne, représente une option à long terme pour le contrôle efficace des pertes en nutriments par ruissellement dans les bassins agricoles.
Mots-clés :
- zones tampons,
- maïs-soya,
- pratiques de protection,
- bandes enherbées,
- zones riveraines
Parties annexes
Références bibliographiques
- ABU-ZREIG M., R.P. RUDRAR, H.R. WHITELEY, M.N. LALONDE and N.K. KAUSHIK (2003). Phosphorus removal in vegetated filter strips. J. Environ. Qual., 32, 613-619.
- BEAULAC M.N. and K.H. RECKOW (1982). An examination of land use-nutrient export relationships. Water Resour. Bull., 18, 1013-1022.
- BLANCO-CANQUI H., C.J. GANTZER, S.H. ANDERSON, E.E. ALBERTS and F. GHIDEY (2002). Saturated hydraulic conductivity and its impact on simulated runoff for claypan soils. Soil Sci. Soc. Am. J., 66, 1596-1602.
- BURWELL R.E., G.E. SCHUMAN, K.E. SAXTON and H.G. HEINEMANN (1976). Nitrogen in subsurface discharge from agricultural watersheds. J. Environ. Qual., 5, 325-329.
- CLAUSEN J.C., K. GUILLARD, C.M. SIGMUND and K.M. DORS (2000). Water quality changes from riparian buffer restoration in Connecticut. J. Environ. Qual., 29, 1751-1761.
- COULTER C.B., R.K. KOLKA and J.A. THOMPSON (2004). Water quality in agricultural, urban, and mixed land use watersheds. J. Am. Water Resour. Assoc., 40, 1593-1601.
- DILLAHA T.A., R.B. RENEAU, S. MOSTAGHIMI and D. LEE (1989). Vegetative filter strips for agricultural nonpoint source pollution control. Trans. ASAE, 32, 513-519.
- DOSSKEY M.G., K.D. HOAGLAND and J.R. BRANDLE (2007). Change in filter strip performance over ten years. J. Soil Water Conserv., 62, 21-32.
- EDWARDS W.M. and L.B. OWENS (1991). Large storm effects on total soil loss. J. Soil Water Conserv., 46, 75-78.
- GILLIAM J.W. (1994). Riparian wetlands and water quality. J. Environ. Qual., 23, 896-900.
- HATFIELD J.L., D.D. JAYNES, M.R. BURKAT, C.A. CAMBARDELLA, T.B. MOORMAN, J.H. PRUEGER and M.A. SMITH (1999). Water quality in Walnut Creek Watershed: setting and farming practices. J. Environ. Qual., 28, 11-24.
- ICE G. and D. BINKLY (2003). Forest streamwater concentrations of nitrogen and phosphorus. J. Forest., 101, 21-28.
- JACOBS T.C. and J.W. GILLIAM (1985). Riparian losses of nitrate from agricultural waters. J. Environ. Qual., 14, 472-478.
- JAYNES D.B., J.L. HATFIELD and D.W. MEEK (1999). Water quality in Walnut Creek watershed: herbicides and nitrate in surface waters. J. Environ. Qual., 28, 45-59.
- JONES B.K., A.C. NEALE, M.S. NASH, R.D. WAN REMORTEL, J.D. WICKMAN, K.H. RITTERS and R.V. O’NEILL (2001). Predicting nutrient and sediment loads to streams from landscape matrics: a multiple watershed study from United States Mid-Atlantic Region. Landscape Ecol., 16, 301-312.
- KANG S., H. LIN, W.J. GBUREK, G.L. FOLMAR and B. LOWERY (2008). Baseflow nitrate in relation to stream order and agricultural land use. J. Environ. Qual., 27, 808-816.
- KELLY B.P. and M.L. POMES (1998). Preferential flow and transport of nitrate and bromide in claypan soil. Ground Water, 36, 484-494.
- LAL R. (1976). Soil erosion problems on an Alfisol in Western Nigeria and their control. In: IITA Monogr., No1, IITA. Ibadan, Nigeria, 208 p.
- LIAO N. and S. MARTEN (2000). Determination of total phosphorus by flow injection analysis colorimetry (acid perusulfate digestion method) 10-115-01-1-F. Zellweger Analytics, Milwaukee, WI, USA.
- LOWRANCE R.R., L.S. ALTIER, D. NEWBOLD, R.R. SCHNABEL, P.M. GROFFMAN, J.M. DENVER, D.L. CORRELL, W. GILLIAM, J.L. ROBINSON, R.B. BRINSFIELD, K.W. STAVER, W. LUCAS and A.H. TODD (1997). Water quality functions of riparian forest buffers in Chesapeake Bay Watersheds. Environ. Manage., 21, 687-712.
- LOWRANCE R.R., R. TODD, J. JR. FAIL, O. JR. HENDRICKSON, R. LEONARD and L. ASMUSSEN (1984). Riparian forests as nutrient filters in agriculture watersheds. BioSci., 34, 371-377.
- LYONS J.B., J.H. GORRES and J.A. AMADOR (1998). Spatial temporal variability of phosphate retention in riparian forest soils. J. Environ. Qual., 27, 895-903.
- McINTYRE S.C. (1993). Reservoir sedimentation rates linked to long term changes in agricultural land use. Water Res. Bull., 29, 487-495.
- MORGAN R.P.C., L. MARTIN and C.A. NOBLE (1987). Soil erosion in the United Kingdom: A case study from mid-Bedfordshire. Silsoe College Occasional Paper No 14, Silsoe College, Cranfield Univ., Silsoe, UK, 58 p.
- MOTAVALLI P.P., S.H. ANDERSON and P. PENGTHAMKEERATI (2003). Surface compaction and poultry litter effects on corn growth, nitrogen availability, and physical properties of claypan soil. Field Crops Res., 84, 303-318.
- NORD E.A. and L.E. LYON (2003). Managing material transfer and nutrient flow in an agricultural watershed. J. Environ. Qual., 32, 562-570.
- OMERNIK J.M. and T.R. McDowell (1977). Nonpoint source-stream nutrient level relationships - A nationwide study. EPA-600/3-P77-105, Springfield, VA, U.S. Environmental Protection Agency.
- OWENBY J.R. and D.S. EZELL (1992). Monthly station normals of temperature, precipitation, and heating and cooling degree days 1961-90. National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, USA.
- PARSONS J.E., R.B. DANIELS, J.W. GILLIAM, T.A. DILLAHA (1994). Reduction in sediment and chemical load agricultural field runoff by vegetative filter strips. Report No. 286. Raleigh, NC, North Carolina Water Resources Institute, Chapel Hill, NC, USA, 75 p.
- PERKINS B.D., K. LOHMAN, E.V. NIEUWENHUYSE and J.R. JONES (1998). An examination of land cover and stream water quality among physiographis provinces of Missouri, USA. Verh. Internat. Verein. Limnol., 26, 940-947.
- PETERJOHN W.T. and D.L. CORRELL (1984). Nutrient dynamics in an agricultural watershed: observation on the role of riparian forest. Ecology, 65, 1466-1475.
- PETERSON A. and B. VONDRACEK (2006). Water quality in relation to vegetative buffers around sinkholes in karst terrain. J. Soil Water Conserv., 61, 380-390.
- PRITZLAFF D. (1999a). Determination of nitrate/nitrite in surface and wastewaters by flow injection analysis 10-107-04-1-C. Zellweger Analytics, Milwaukee, WI, USA.
- PRITZLAFF D. (1999b). Determination of nitrate/nitrite in surface and wastewaters by flow injection analysis 10-107-04-1-B. Zellweger Analytics, Milwaukee, WI, USA.
- PUCKETT L.J. (2004). Hydrogeologic control on the transport and fate of nitrate in ground water beneath riparian zones: results from thirteen studies across the United States. Water Sci. Technol., 49, 47-53.
- ROBINSON C.A., M. GHAFFARZADEH and R.M. CRUSE (1996). Vegetative filter strip effects on sediment concentration in cropland runoff. J. Soil Water Conserv., 50, 227-230.
- SAS Institute (1999). SAS user’s guide. Statistics. SAS Inst., Cary, NC, USA.
- SCHILLING K.E. and J. SPOONER (2006). Effects of watershed-scale land use change on stream nitrate concentration. J. Environ. Qual., 35, 2132-2145.
- SCHMITT S.J. (1999). Application of a flow source mixing model and remote sensing to the hydrology and water quality of two small watersheds in Northern Missouri. M.S. Thesis, University of Missouri, Columbia, MO, USA, 214 p.
- SCHMITT T.J., M.G. DOSSKEY and K.D. HOAGLAND (1999). Filter strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Qual., 28, 1479-1489.
- SEOBI T., S.H. ANDERSON, R.P. UDAWATTA and C.J. GANTZER (2005). Influence of grass and agroforestry buffer strips on soil hydraulic properties for an Albaqualf. Soil Sci. Soc. Am. J., 69, 893-901.
- TOMER M.D. and M.R. BURKART (2003). Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds. J. Environ. Qual., 32, 2158-2171.
- UDAWATTA R.P., P.P. MOTAVALLI, H.E. GARRETT and J.J. KRSTANSKY (2006a). Nitrogen loss in runoff from three adjacent agricultural watersheds with claypan soils. Agr. Ecosyst. Environ., 117, 39-48.
- UDAWATTA R.P., G.S. HENDERSON, J.R. JONES and R.D. HAMMER (2006b). Runoff and sediment from row-crop, row-crop with grass strips, pasture, and forest watersheds. J. Water Sci., 19, 137-149.
- UDAWATTA R.P., P.P. MOTAVALLI and H.E. GARRETT (2004). Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils. J. Environ. Qual., 33, 1709-1719.
- UDAWATTA R.P., J.J. KRSTANSKY, G.S. HENDERSON, and H.E. GARRETT (2002). Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J. Environ. Qual., 31, 1214-1225.
- United States Natural Resources Conservation Service (2006). Land resource regions and major land resource areas of the United States, the Caribbean and the Pacific Basin. Agriculture Handbook 296. USDA-NRCS, Govt. Printing Office, Washington, DC, USA.
- WANG F., C.W. FRAISSE, N.R. KITCHEN and K.A. SUDDUTH (2003). Site-specific evaluation of the CROPGRO-soybean model on Missouri claypan soils. Agr. Syst., 76, 985-1005.
- WELSCH D.J. (1992). Riparian forest buffers: Function and design for protection and enhancement of water resources. NA-PR-07-91.USDA Forest Service, Forest Resources Management, Randor, PA, USA, 20 p.
- WIGINGTON P.J., S.M. GRIFFITH, J.A. FIELD, J.E. BAHAM, W.R. HOWARTH, J. OWEN, J.H. DAVIS, S.C. RAIN and J.J. STEINER (2003). Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in Western Oregon. J. Environ. Qual., 32, 162-170.
- ZHENG F., C. HUANG and D. NORTON (2004). Effects of near surface hydraulic gradients on nitrate and phosphorus losses in surface runoff. J. Environ. Qual., 33, 2174-2182.