Résumés
Résumé
Les colorants sont largement utilisés dans les imprimeries, les produits alimentaires, cosmétiques et cliniques, mais en particulier dans les industries textiles pour leur stabilité chimique et la facilité de leur synthèse et leur variété de couleurs. Cependant, ces colorants sont à l’origine de la pollution une fois évacués dans l’environnement. La production mondiale des colorants est estimée à plus de 800 000 t•an-1 et les colorants azoïques sont majoritaires et représentent 60-70 %. Compte tenu de la composition très hétérogène de ces derniers, leur dégradation conduit souvent à la conception d’une chaîne de traitement physique-chimique et biologique assurant l’élimination des différents polluants par étapes successives. Dés études ont montré que plusieurs colorants azoïques sont toxiques et mutagènes et le traitement biologique de ces colorants semble présenter un intérêt scientifique majeur. Les traitements physico-chimiques communs (adsorption, coagulation/floculation, précipitation etc.) sont couramment utilisés pour les effluents industriels. Malgré leur rapidité, ces méthodes se sont avérées peu efficaces compte tenu des normes exigées sur ces rejets. Le traitement biologique constitue une alternative fiable; en effet, plusieurs microorganismes sont capables de transformer les colorants azoïques en sous-produits incolores. Les bactéries dégradent les colorants azoïques en deux étapes : un clivage de liaison azo, par l’intermédiaire de l’azoréductase, suivi d’une oxydation des amines aromatiques formées lors de la première étape. L’azoréduction constitue alors une étape clé du traitement des effluents chargés de ces colorants.
Mots-clés :
- Colorants,
- pollution de l'eau,
- industries textiles,
- biodégradation,
- toxicité
Abstract
Dyes are widely used for industrial, printing, food, cosmetic and clinical purposes as well as textile dyeing because of their chemical stability, ease of synthesis, and versatility. Their stability, however, causes pollution once the dyes are released into the environment in effluents. More than 800,000 tons of dyes are annually produced worldwide, of which 60 to 70% are azo dyes. Considering the heterogeneous composition of these latter dyes, their degradation usually requires a chain of physical, chemical and biological treatments assuring the elimination of different pollutants in successive steps. In addition, some azo dyes are toxic and mutagenic and thus the biological treatment of these dyes is now of major scientific interest. Physical-chemical treatments (adsorption, coagulation/flocculation precipitation, etc.) are usually used for industrial effluents. In spite of their rapidity, these methods have turned out to be ineffective in attaining the standards required for these discharges. As a viable alternative, biological processes are receiving increasing interest owing to their cost effectiveness and their ability to produce less sludge. It has been found that some microorganisms can transform azo dyes into colourless products. Bacterial degradation of azo dyes is often initiated by an enzymatic biotransformation step that involves cleavage of azo linkages with the aid of an azoreductase and an electron donor. As the azoreductase in some microorganisms can catalyze the reductive cleavage of azo groups, they have potential advantages in developing bio-treatment methods of wastewater containing azo compounds.
Keywords:
- Synthetic dyes,
- wastewater pollution,
- textile industries,
- biodegradation,
- toxicity
Parties annexes
Références bibliographiques
- Abraham T.E., R.C. Senan, T.S. Shaffiqu, J.J. Roy, J.J., T.P. Poulouse et P.P. Thomas (2003). Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor. Biotechnol. Progr., 19, 1372-1376.
- Adedayo O., S. Javadpour, C. Taylor, W.A. Anderson et M. Moo-Young (2004). Decolorization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J. Microbiol. Biotechnol., 20, 545–550.
- Alvares A.B.C., C. Dlaper et S.A. Parsons (2001). Partial oxidation by ozone to remove recalcitrance from wastewaters – a review. Environ. Technol., 22, 409-427.
- Alves de Lima R.O., A.P. Bazo, D.M. Favero Salvadori, C.M. Rech, d. De Palma Oliveira et G. de A. Umbuzeiro (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Res., 626, 53-60.
- ANSELME C. et E.P. JACOBS (1996). Water treatment membrane processes. McGraw Hill Mallevialle, New York, NY, USA, pp. 401-1087.
- Azbar N., T. Yonar, T. et K. Kestioglu (2004). Comparison of various oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55, 1, 35-43.
- Balan D.S.L. et R.T.R. Monteiro (2001). Decolorization of textile indigo dye by ligninolytic fungi. J. Biotechnol., 89, 141–145.
- Ball A.S., W.B. Betts et A.J. McCarthy (1989). Degradation of lignin-related compounds by Actinomycetes. Appl. Environ. Microbiol., 55, 1642-1644.
- Banat I.M., P. Nigam, D. Singh et R. Marchant (1996). Microbial decolorization of textile-dye-containing effluents: A review. Bioresour. Technol., 58, 217-227.
- Banerjee A., D. Nabasree et B. De (2005). In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem., 90, 727-733.
- Basibuyuk M. et C.F. Forester (1997). The use of sequential anaerobic/aerobic processes for the biotreatment of a simulated dyeing wastewater. Environ. Technol., 18, 843-848.
- Bauer C., P. Jacques et A. Kalt (2001). Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J. Photochem. Photobiol. A Chem., 140, 87-92.
- Ben Mansour H., D. Corroler, D. Barillier, K. Ghedira, L. Chekir et R. Mosrati (2007). Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: Acids yellow 17, violet 7 and orange 52, and their biodegradation products by Pseudomonas putida mt-2. Food Chem. Toxicol., 45, 1670-1677.
- Ben Mansour H., R. Mosrati, D. Corroler, D. Bariller, K. Ghedira, D. Bariller et L. Chekir-Ghedira (2009a) In vitro study of DNA damage induced by acid orange 52 and its biodegradation derivatives. Environ. Toxicol. Chem., 28, 489-495.
- Ben Mansour H., R. Mosrati, D. Corroler, K. Ghedira, D. Bariller et L. Chekir (2009b). Genotoxic and anti-butyrylcholinesterasic activities of acid violet 7 and its biodegradation products. Drug Chem. Toxicol., 32, 230-237.
- Ben Mansour H., D. Bariller, D. Correler, K. Ghedira, L. Chekir et R. Mosrati (2009c). In vitro mutagenicity of acid violet 7 and its degradation products by Pseudomonas putida mt-2: Correlation with chemical structure. Environ. Toxicol. Pharmacol., 27, 231-236.
- Ben Mansour H., R. Mosrati, D. Corroler, K. Ghedira, D. Bariller et L. Chekir (2009d). Genotoxic and anti-butyrylcholinesterasic activities of acid violet 7 and its biodegradation products. Drug Chem. Toxicol., 32, 230-237.
- Ben Mansour H., D. Corroler, D. Bariller, K. Ghedira, L. Chekir-Ghedira et R. Mosrati (2009e). Influence of the chemical structure on the biodegradability of acids yellow 17, violet 7 and orange 52 by Pseudomonas putida. Ann. Microbiol., 59, 1-7.
- Ben Mansour H., R. Mosrati, D. Corroler, K. Ghedira, D. Bariller et L. Chekir-Ghedira (2009f) Mutagenicity and genotoxicity of acid yellow 17 and its biodegradation products. Drug Chem. Toxicol., 32, 222-229
- Ben Mansour H., R. Mosrati, D. Corroler, K. Ghedira, D. Bariller et L. Chekir-Ghedira (2010). Acid violet 7 and its biodegradation products induce chromosome aberration, lipid peroxidation and cholinesterase inhibition in mouse bone morrow. Environ. Sci. Pollut. Res., 17, 1371-1778.
- Benitez F.J., J.L. Acero, F.J. Real et A.I. Leal (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacateic acid in aqueous solutions. Water Res., 35, 1338-1343.
- Bessekhouad Y., D. Roberto et J.V. Weber (2003). Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobiol. A Chem., 157, 47-53.
- Blumel S., H.J. Knackmuss et A. Stolz (2002). Molecular cloning and characterizatiion of the gene coding for the aerobic azoreductase from Xenophillus azovorans KF44F. Appl. Environ. Microbiol., 68, 3948–3955.
- Blümel S., C. Mattias, L. Martina, S. Ansreas et K. Hans-Joachim (1998). Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy sulfoazobenzene as the sole source of carbon and energy. Appl. Environ. Microbiol., 64, 2315–2317.
- Brohm K. et E. Frohwein (1937). Nachweis von durch Säueringentfarbten künstlichen Eigelbfrabstoffen in Milchspeiseeis. Zbl. Lebensmitt. Forsch., 73, 30.
- Brown M.A. et S.C. Devito (1993). Predicting azo dye toxicity. Crit. Rev. Environ. Sci. Technol., 12, 405-414.
- Burke NS. et D.L. Crawford (1998). Use of azo dye ligand chromatography for the partial purification of a novel extracellular peroxidase from Streptomyces viridosporus T7A. Appl. Microbiol. Biotechnol., 49, 523-30.
- Calabro V., G. Pantano, R. Kang, R. Molinari et E. Drioli (1990). Experimental study on integrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis. Desalination, 78, 257-277.
- CAPON M., V. COURILLEU et C. VALTTE (1999). Chimie des couleurs et des odeurs, culture et technique. Nantes ISBN 2-9502444-2-4
- Chang J.S., Chou, C., Y.C. Lin, P.J. Lin, J.Y. Ho et T.L. Hu (2001). Kinetic characteristic of bacterial azo dyes decolorization by Pseudomonas luteola. Water Res., 35, 2841-2850.
- Chang J.S. et Y.C. Lin (2000). Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol. Prog., 16, 979-985.
- Chen K.C., J.Y. Wu, D.J. Liu et S.C.J. Hwang (2003). Decolorisation of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 101, 57-68.
- Chen H., S.L. Hopper et C.E. Cerniglia (2005). Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151, 1433–1441.
- Chen B.Y. (2006). Toxicity assessment of aromatic amines to Pseudomonas luteola: chemostat pulse technique and dose-response analysis. Proc. Biochem., 41, 1529–1538.
- Chen H., R.F. Wang et C.E. Cerniglia (2004). Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr. Purif., 34, 302–310.
- Chivukula M. et V. Renganathan (1995). Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Environ. Microbiol., 61, 4374-4377.
- Christie R. (2001). Colour chemistry. The Royal Society of Chemistry, Cambridge, United Kingdom.
- Chung KT., E.G. Fulk et A.Y. Andrews (1981). Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol., 42, 641-648.
- Chung K.T., G.E. Fulk et M. Egan (1978). Reduction of azo dyes by intestinal anaerobes. Appl. Environ. Microbiol., 35, 5588-5620.
- Chung K.T., S.E.J. Stevens et C.E. Cerniglia (1992). The reduction of azo dyes by the intestinal microflora. Critical Rev. Microbiol., 18, 175–197.
- Combes R.D. et R.B. Haveland-Smith (1982). A review of the genotoxicity of food, drug, and cosmetic colour and other azo, triphenylmethane and xanthene dyes. Mutation Res. Rev. Genetic Toxicol., 198, 101-243.
- COOPER P (1995). Color in dye house effluent. Society of dyes and colourists (Éditeur), Bradford, West Yorkshire, Grande-Bretagne, 197 p.
- Crips C., A. John, J.A. Bumpus et S.D. Aust (1990). Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium.Appl. Environ. Microbiol., 56, 1114-1118.
- De France B.F., M.H. Carter et P.D. Josephy (1986). Comparative metabolism and mutagenicity of azo and hydrazone dyes in the Ames test. Food Chem. Toxicol., 24, 165-196.
- De Heridia J.B., J. Torregrosa, R. Dominguez et J.A. Peres (2001). Kinetic model for phenolic compound oxidation by Fenton’s reagent. Chemopshere, 45, 85-90.
- DEPA (Danish Environmental Protection Agency) (2000). Survey of azo-colorants in Denmark, Toxicity and fate of azo dyes.
- Dos Santos A., F.J. Cervantes et J.V. van Lier, (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol., 98, 2369-2385.
- Durán N., M.F.S. Teixeira, R. De Conti et E. Esposito (2002). Ecological-friendly pigments from fungi. Critical Rev. Food Sci. Nutr., 42, 53-66.
- Eichlerova I., L. Homolka, L. Lisa et F. Nerud (2005). Orange G and remazol brilliant blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere, 60, 398–404.
- Fang H., H. Wenrong et L. Yuezhong (2004). Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere, 57, 293–301.
- Feigel B.J. et H.J. Knackmuss (1993). Syntropic interactions during degradation of 4 aminobenzenesulfonic acid by a two species bacterial culture. Arch. Microbiol., 159, 124–130.
- Fenton H.J.H. (1894). Oxidation of tartaric acid in the presence of ion. J. Chem. Soc., 65, 899-910.
- Fujian X., C. Hongzhang et L. Zuohu (2001). Solid–state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80, 149-151.
- Galindo C. (1998). Dégradation de colorants par la méthode d’oxydation avancée UV/H2O2. Thèse de doctorat, n° 98 MULH 0520, Université de Mulhouse, France.
- Ganesh R., g.d. Boardman ET D. Michelson (1994). Fate of azo dyes in sludges. Water Res., 28, 1367-1376.
- GANESH R. (1992) Fate of azo dye in sludges. Thèse de doctorat, Chimie, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 193 p.
- Ghorpade A.K. et H.T. Spencer (1993). Azo dyes metabolism by Pseudomonas putida. Dans : 48th Purdue International Waste Conference Proceedings, Lewis Publishers, Chelsea, Michigam, pp. 699-714.
- Glenn J.K. et M.H. Gold (1983). Decolorization of several polymeric dyes by the lignin- degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol., 45, 1741-1747.
- Golka K., S. Kopps et Z.W. Myslak (2004). Carcinogenicity of azo colorants: influence of solubility and bioavaibility. Toxicol. Lett., 151, 203-210.
- Guivrach E. et M.A. Oturan (2004). Le problème de la contamination des eaux par les colorants synthétiques : comment les détruire? Actualité chim., 277/238, 65-68.
- Haber F. et J. Weiss (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Nat. Acad. Sci., 134, 332-351.
- Hao O.J., H. Kim et P.C. Chiang (2000). Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol., 30, 449-505.
- Harazono, K. et K. Nakamura (2005). Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol. Chemosphere, 59, 63-68.
- Haug, W., A. Schmidt, B. Nortemann, D.C. Hempel, A. Stolz et H.J. Knackmuss (1991). Mineralization of the sulphonated azo dye mordant yellow 3 by a 6-aminonaphthatene- 2-sulphonate-degrading bacterium consortium. Appl. Environ.l Microbiol., 57, 3144-3149.
- Hernandez, R., M. Zappi, J. Colucci et R. Jones (2002). Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water. J. Hazard Mater., 92, 33-50.
- Hong, A., M.E. Zappi, C.H. Kuo et D.O. Hill (1996). Modelling the kinetics of illuminated and dark advanced oxidation processes. ASCE J. Environ. Eng., 122, 1, 58-62.
- Horitsu, H., M. Takada, E. ldaka, M. Tomoyeda et T. Ogawa (1977). Degradation of p-aminoazobenzene by Bacillus subtilis. Eur. J. Appl. Microbiol., 4, 217-224.
- HSUEH C.-C. et B.-Y. Chen (2007). Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J. Hazard. Mater., 141, 842-849.
- Hu, T.L. (1994). Decolourization of reactive azo dye by transformation with Pseudomonas luteola. Bioresour. Technol., 49, 47–51.
- Hu, T.L. (2001). Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Sci. Technol., 43, 2, 261–269.
- IARC (1982). World Health Organization, International Agency for research on Cancer. Dans : Monographs on the evaluation of the carcinogenic risk of chemicals to human. "Some industrial chemicals and dyestuffs", Lyon, France, 29 p.
- Idaka E. et Y. Ogawa (1978). Degradation of azo compounds by Aeromonas hydrophila var. 2413. Dyers Colour., 94, 91-94.
- Ince N.H. et G. Tezcanli (2001). Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments, 49, 145-153.
- Jinqi L. et L. Houtian (1992). Degradation of azo dyes by algae. Environ. Pollut., 75, 273-278.
- Jung R., D. Steinle et R. Anliker (1992). A compilation of genotoxicity and carcinogenicity ata of aromatic aminosulfonic acids. Food Chem. Toxicol., 30, 635-660.
- Kalme S.D., G.K. Parshetti, S.U. Jadhav et S.P. Govindwar (2007). Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour. Technol., 98, 1405–1410.
- Kaushik G., M. Gopal et I.S. Thakur (2010). Evaluation of performance and community dynamics of microorganisms during treatment of distillery spent wash in a three stage bioreactor. Bioresour. Technol., 101, 4296-4305.
- Kondo M.M., M.A.S.V. Arcos, T. Marco, T. et M.T. Grassi (2002). Dissolved organic carbon determination using FIA and photo-fenton reaction. Brazil. Arch. Biol. Technol., 45, 81-87.
- Kulla H.G., F. Klausener, U. Meyer, B. Lüdeke et T. Leisinger (1983). Interference of aromatic sulfo groups in the microbial degradation of the azo dyes orange I and orange II. Arch. Microbiol., 135, 1-7.
- Kuo W.G. (1992). Decolorization dye wastewater with feteon’s reagent. Water Res.. 26, 881-886.
- Libra J.A., M. Borchert, L. Vigelahn et T. Thomas Storm (2004). Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere, 56, 167-180.
- Lide D.R. (1999). Hanbook of chemistry and physics. Solubility of selected gases in water. 79e Ed., Cleveland (OH), Chemical Rubber Co.
- Lin C.C. et Y.T. Lai (2006). Adsorption and recovery of lead (II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J. Hazard. Mater., 137, 99-105.
- Lin C.N., H.L. Chen et M.H. Yen (2008). Flavonoids with DNA strand-scission activity from Rhus javanica var. roxburghiana. Fitoterapia, 79, 32–36.
- Maier J., A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo et G.M. Gübitz (2004). A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl. Environ. Microbiol., 70, 837–844.
- MANAHAN S.E (1994). Environmental chemistry. Lewis publishing, 6e édition, Atlanta, GA, USA.
- Manning B.W., C.E. Cernigli et T.E. Federle (1985). Metabolism of the benzidine-based azo dye direct black 38 by human intestinal microbiota. Appl. Environ. Microbiol., 50, 10-15.
- Mechsner K. et K. Wuhrmann (1982). Cell permeability as a rate limiting factor in the microbial reduction of sulfonated azo dyes. Eur. J. Appl. Microbiol. Biotechnol., 15, 123-126.
- Medvedev Z.A., H.M. Crowne et M.N. Medvedeva (1988). Age related variations of hepatocarcinogenic effect of azo dye (3’-MDAB) as linked to the level of hepatocyte polyploidization. Mech. Ageing Develop., 46, 159-174.
- Miller J.A. et E.C. Miller (1961). The carcinogenicity of 3-methoxi-4-aminoazo-benzen and its N-methyl derivatives for extrahepatic tissues of the rat. Cancer Res., 21, 1068-1074.
- Mills C., R.J. Bull et K.P. Cantor (1998). Risques pour la santé liés à la consommation de sous-produits de la chloration de l'eau potable : rapport d'un groupe d'experts. Maladie Chron. Canada, 19, 3.
- Moutaouakkil M., Y. Zeroual, F.Z. Dzayri, M. Talbi, K. Lee et M. Blghen (2003). Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch. Biochem. Biophys., 413, 139–146.
- Moutaouakkil M., Y. Zeroual, F.Z. Dzayri, M. Talbi, K. Lee et M. Blghen (2004). Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by using fluidized bed bioreactor. Current Microbiol., 48, 124–129.
- Nachiyar C.V. et G.S. Rajakumar (2004). Mechanism of Navitan Fast Blue S5R degradation by Pseudomonas aeroginosa. Chemosphere, 57, 165–169.
- Neamtu M., A. Yediler, I. Siminicanu, M. Macoveanu et A. Kettrup (2004). Decolorization of disperse red 354 azo dye in water by several oxidation processes – a comparative study. Dyes Pigment, 60, 61-68.
- Nigam P., I.M. Banat, D. Singh et R. Marchant (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Proc. Biochem., 31, 435-442.
- Nigam, P. et R. Marchant (1995). Selection of a substratum for composing biofilm system of a textile-effluent decolorizing bacteria. Biotechnol. Lett., 17, 993-996.
- O’Neill, C., F.R. Hawkes, D.L. Hawkes, N.D. Lourenco, H.M. Pinheiro et W. Delee (1999). Colour in textile effluents – sources, measurement, discharge consents and simulation: a review. J. Chem. Technol. Biotechnol., 74, 10009–10018.
- Pagga, U. et D. Brown (1986). The degradation of dyestuffs part II: behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere, 15, 479-491.
- Pandey, A, P. Singh et L. Iyengar (2007). Bacterial decolorization and degradation of azo dyes. Int. Biodeter. Biodegrad., 59, 73-84.
- Pandey, B.V. et R.S. Upadhyay (2006). Spectroscopic characterization and identification of Pseudomonas fluorescens mediated metabolic products of Acid Yellow-9. Microbiol. Res., 161, 311-315.
- Pasti, M.B., A.L. Pometto et M.P. Nuti (1990). Crawford DL.lLignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl. Environ. Microbiol., 56, 2213-2218.
- Paszczynski A., M.B. Pasti-Grigsby, S. Goszczynski, R.L. Crawford et D.L. Crawford (1992). Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscust. Appl. Environ. Microbiol., 58, 3598-3604.
- Percy A.J., N. Moore et J.K. Chipman (1989). Formation of nuclear anomalies in rat intestine by benzidine and its biliary metabolites. Toxicology, 57, 217-223.
- Quillardet P. et M. Hofnung (1993). The SOS chromotest: a review. Mutation Res./Rev. Gen. Toxicol., 297, 235-279.
- Rafii F. et C.E. Cerniglia (1993). Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl. Environ. Microbiol., 59, 1731-1734.
- Rafii F., J.D. Hall et C.E. Cernigalia (1997). Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem. Toxicol., 35, 897-901.
- Raghavacharya C. (1997). Colour removal from industrial effluents – a comparative review of available technologies. Chem. Eng. World, 32, 53-54.
- RAMALHO, DCF (2005). Degradation of dyes with microorganisms studies with Ascomycete yeasts., Université de Minho, Portugal, 14 p.
- Ramalho P.A., H. Scholze, M.H. Cardoso, M.T. Ramalho et A.M. Oliveira-Campos (2002.) Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides. Enzyme Microb. Technol., 31, 848-854.
- Rau J., H.J. Knackmuss et A. Stolz (2002). Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol., 36, 1497–1504.
- Rehn L. (1895). Blasengeschwulste bei Fuschin arbeiten. Arch. Klin Chir., 50, 588.
- Ren S., J. Guo et G. Zeng (2006). Guoping sun decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotechnol., 72, 1316–1321.
- Robinson T., G. McMullan, R. Marchant et P. Nigam (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77, 247-255.
- Russ R., J. Rau et A. Stolz (2000). The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl. Environ. Microbiol., 66, 1429–1434.
- Sandhu P. et J.K. Chipman (1990). Bacterial mutagenesis and hepatocyte unscheduled DNA synthesis induced by chrysoidine azo-dye components. Mutation Res., 240, 227-236.
- Santé Canada (1999). Chloration de l'eau, votre santé et vous.
- Seyewetz A. et P. Sisley (1896). Chimie des matières colorantes artificielles.Libraires de l’Académie de Médicine (Éditeur), Paris Masson, France.
- Shu H.Y. et C.R. Huang (1995). Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process. Chemosphere, 31, 3813-3825.
- Slokar Y.M. et A.M. Le Marechal (1998). Methods of decoloration of textile wastwaters. Dyes Pigments, 37, 335-356.
- Solozhenko E.G., N.M. Soboleva et V.V. Goncharuk (1995). Decolorization of azo dye solutions by Fenton’s oxidation. Water Res., 29, 2206-2210.
- Sugiura W., T. Miyashita, T. Yokoyama et M. MOT00 Ara (1999). Isolation of azo-dye-degrading microorganisms and their application to white discharge printing of fabric. J. Biosci. Bioeng., 88, 577-581.
- Sugiura W., T. Yoda, T. Matsuba, Y. Tanaka et Y. Suzuki (2006). Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci. Biotechnol. Biochem., 70, 1655-1665.
- Suzuki T., S. Timofei, L. Kurunczi, U. Dietze et G. Schurmann (2001). Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere, 45, 1-9.
- Swamy J. et J.A. Ramsay (1999). Effects of glucose and NH4+ concentrations on sequential dye decoloration by Trametes versicolor. Enz. Microb. Technol.,, 25, 278-284.
- Szpyrkowicz L., C. Juzzolino et S.N. Kaul (2001). A comparative study on oxidation of disperses dyes by electrochemical process, ozone, hydrochlorite and Fenton reagent. Water Res., 35, 2129-2136.
- Tan N.C., A. van Leeuwen, E.M. van Voorthuizen et P. Slenders (2005). Prenafeta-Boldu, F.X.; Temmink, H.; Lettinga, G.; Field, J. A. Fate and biodegradability of sulfonated aromatic amines. Biodegrad., 16, 527-537.
- Taylor J.S. et E.P. Jacobs (1996). Water treatment membrane processes. McGRAW HILL (Éditeur), New-York, NY, 238 p.
- Tsuda S., N. Matsusaka, H. Madarame, S. Ueno, N. Susa, K. Ishida, N. Kawamura, K. Sekihashi et Y.F. Sasaki (2000). The comet assay in eight mouse organs: result with 24 azo compounds. Mutation Res., 465, 11-26.
- Tzitzi M., D.V. Vayenas et G. Lyberatos (1994). Pretreatment of textile industry wastewaters with ozone. Water Sci. Technol., 28, 151-160.
- Umbuzeiro G.A., H. Freeman, S.H. Warren, F. Kummrow et L.D. Claxton (2005). Mutagenicity evaluation of the commercial product CI Disperse Blue 291 using different protocols of the Salmonella assay. Food Chem. Toxicol., 43, 49-56.
- Vander Bruggen B., L. Lejon et C. Vandecasteele (2003). Reuse, treatment and discharge of the concentrate of pressure-driven membrane processes. Environ. Sci. Technol., 37, 3733-3738.
- Van der Zee F.P. et S. Villaverde (2005). Combined anaerobic–aerobic treatment of azo dyes-A short review of bioreactor studies. Water Res., 39, 1425-1440.
- Vendevivere P.C., R. Bianchi et W. Verstraete (1998). Treatement and creuse from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol., 72, 289-302.
- Venkataraman K. (1901). The analytical chemistry of synthetic dyes. National Chemistry Laboratory, Poona, India ISBN 0-471-90575-5.
- Walker R. (1970). The metabolism of azo compounds: a review of the literature. Food Cosm. Toxicol., 8, 659-676.
- Wang J., B. Guo, X. Zhang, Z. Zhang, J. Han et J. Wu (2005). Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. Ultrason. Sonochem., 12, 331–337.
- Welham A. (2000). The theory of dyeing (and the secret of life). J. Soc. Dyers Colour., 116, 140-143.
- White D. (1995). The physiology and biochemistry of Prokaryotes. Oxford University Press, New York, NY.
- Willmott N.J., J.T. Gutherie et G. Nelson (1998). The biotechnology approach to colour removal from textile effluent. J. Soc. Dyers Colour., 114, 38-41.
- Wong P.K. et P.Y. Yuen (1998). Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res., 30, 1736-1744.
- Wuhrmann K., K.I. Mechsner et T. Kappeler (1980). Investigation on rate determining factors in the microbial reduction of azo dyes. Appl. Microbiol. Biotechnol., 9, 325-338.
- Yahagi Y., M. Degawa, Y. Seino, T. Matsushima, M. Nagao, T. Sugimura et Y. Hashimoto (1975). Mutagenicity of mutagenic azo dyes and their derivatives. Cancer Lett., 1, 91-96.
- Yatome C., T. Ogawa, H. Hayashi et T. Ogawa (1991). Microbial reduction of azo dyes by several strains. J. Environ. Sci. Health, A 26, 471-485.
- Yatome C., T. Ogawa, D. Koga et E. Idaka (1981). Biodegradability of azo and triphenyl methane dyes by Pseudomonas pseudomallei 13NA. J. Soc.Dyers Colour., 97, 166-169.
- Yatome C., T. Ogawa, K. Itoh, A. Sugiyama et E. Idaka (1987). Degradation of azo dyes by cell-free extracts from Aeromonas hydrophila var. 2413. J. Soc. Dyers Colour., 3, 389-395.
- Yu J., X. Wang et P.L. Yue (2001). Optimal decolorization and kenetic modeling of synthetic dyes by Pseudomonas strains. Water Res., 35, 3579-3586.
- Yuseuf R.O. et J.A. Sonibare (2004). Characterization of textile industries effluents in Kaduna, Nigeria and pollution implications. Global Nest Int. J., 6, 212-221
- Zhang F., A. Yeldiler, X. Liang et A. Kettrup (2004). Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydroxylzed C.I. Reactive Red 120. Dyes Pigments, 60, 1-7.
- Zhenwang L., C. Zhenlu et L. Jianyan (2000). The PT dye molecular structure and its chromophoric luminescences mechanism. Dans : 15th World Conference on Non-Destructive Testing, 15-21 octobre 2000, Rome, Italie.
- Zhou W. et W. Zimmermann (1993). Decolorization of industrial effluents containing reactive dyes by actinomycetes. Microbiol. Lett., 107, 157-161.
- Zimmermann T., H.G. Kulla et T. Leisinger (1982). Properties of purified Orange II azoreductase, the enzyme initiating azo dyes degradation by Pseudomonas KF46. Eur. J. Biochem., 129, 179-203.
- Zissi U. et G. Lyberatos (1996). Azo-dye biodegradation under anoxic conditions. Water Sci. Technol., 34, 495-500.
- Zollinger H. (1987). Colour chemistry-synthesis, properties and applications of organic dyes and pigments. VCH Publishers Inc., New York, NY, USA.