Résumés
Résumé
Ce travail évalue la pertinence d’une analyse en ondelettes appliquée à la consommation en eau potable, afin d’établir les habitudes de consommation des usagers et de détecter des changements. Cette démonstration exploite une série d’observations de débit au pas de temps horaire, couvrant une période de dix semaines dont le congé des Fêtes de fin d’année, tirée du réseau de distribution d’eau potable de la ville de Québec, Canada. Les résultats confirment la non-stationnarité du débit pour la gamme de périodes à l’étude, soit de 2 à 256 heures. Le principal cycle, qui explique la moitié de la variance naturelle de la série, possède une période de 24 heures dont l’intensité non stationnaire décrit un cycle de sept jours avec des pointes le dimanche matin et des creux au coeur de la semaine de travail. Le second cycle, responsable de plus du tiers de la variance, possède une période de 12 heures dont l’intensité suit également (mais un peu moins clairement) un cycle de sept jours avec des pointes la semaine et des creux le week-end. Ce comportement diffère pendant le congé des Fêtes de fin d’année, lorsque presque toute la variance naturelle est expliquée par la composante 24 heures de la série.
Mots-clés :
- Analyse en ondelettes,
- variance, débit de consommation,
- eau potable,
- réseau de distribution
Abstract
This study evaluates the relevance of wavelet analysis applied to water consumption in order to detect habits and changes in these habits. The demonstration is based on a series of one-hour flow observations from Quebec City’s water distribution flowmeter network for a 10-week period, which includes Christmas and the New Year holidays. Results confirm the non-stationarity of the flow data for all studied periods, which range from 2 to 256 h. The main cycle, which accounts for half of the natural variance of the series, has a period of 24 h, with a non-stationary intensity varying over 7 d, peaking on Sunday mornings and with lows during the work week. The second cycle, responsible for a third of the variance, has a period of 12 h, with an intensity which follows (although not as strongly as the previous cycle) a 7-d cycle, peaking during the week and with lows during the weekend. This behaviour differs during the Holidays, when most of the natural variance is explained by the 24-h component of the series.
Keywords:
- Wavelet analysis,
- variance, water consumption,
- drinking water,
- distribution network
Parties annexes
Références bibliographiques
- ANCTIL F., A. PRATTE, L.-É. PARENT et M.A. BOLINDER. (2008). Non-stationary temporal characterization of the temperature profile of a soil exposed to frost in south-eastern Canada. Nonlin. Processes Geophys., 15, 409-416.
- ANCTIL F. et P. COULIBALY. (2004). Wavelet analysis of the interannual variability in southern Québec streamflow. J. Climate, 17, 163-173.
- COSH M.H. et W. BRUTSAERT. (2003). Microscale structural aspects of vegetation density variability. J. Hydrol., 276, 128-136.
- DAUBECHIES I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics (SIAM) publication, 61.
- FARGE M. (1992). Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech., 24, 395-457.
- LABAT D., J. RONCHAIL et J.L. GUYOT. (2005). Recent advances in wavelet analyses: Part 2 - Amazon, Parana, Orinoco and Congo discharges time scale variability. J. Hydrol., 314, 289-311.
- LAFRENIÈRE M. et M. SHARP. (2003). Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta. Hydrol. Process., 17, 1093-1118.
- LARK R.M. et R. WEBSTER. (2001). Changes in variance and correlation of soil properties with scale and location: Analysis using an adapted maximal overlap discrete wavelet transforms. Eur. J. Soil Sci., 52, 547-562.
- LAUZON N., F. ANCTIL et J. PETRINOVIC. (2004). Characterization of soil moisture conditions at temporal scales from few days to annual. Hydrol. Process., 18, 3235-3254.
- MAHER C. et P. MATHIEU. (2005). Étude hydraulique et interconnexion de Val-Bélair. Recherche de solution visant le transfert de 6 000 m3/j d’eau vers Val-Bélair. Ville de Québec, Tecsult inc., 41 p.
- NAKKEN M. (1999). Wavelet analysis of rainfall-runoff variability isolating climatic from anthopogenic patterns. Environ. Modell. Softw., 14, 283-295.
- PARENT, A.-C., F. ANCTIL et L.-É. PARENT (2006). Characterization of temporal variability in near-surface soil moisture at scales from 1 h to 2 weeks. J. Hydrol., 325, 56-66.
- RAJAGOPALAN B. et U. LALL. (1998). Interannual variability in western US precipitation. J. Hydrol., 210, 51-67.
- SMITH L.C., D.L. TURCOTTE et B.L. ISACKS. (1998). Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Process., 12, 233-249.
- TORRENCE C. et G.P. COMPO. (1998). A practical guide to wavelet analysis. B. Am. Meteorol. Soc., 79, 61-78.
- WHITE M.A., J.C. SCHMIDT et D.J. TOPPING. (2005). Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen Canyon Dam and the Colorado River at Lees Ferry, Arizona. River Res. Applic., 21, 551-565.