Résumés
Résumé
Ce travail a porté sur la déstabilisation d’une émulsion d’huile de coupe algérienne (Tasfalout 22/B) par électrocoagulation (EC) en batch en utilisant des électrodes de fer. L’efficacité du procédé est évaluée par la mesure de la turbidité. Une meilleure efficacité de déstabilisation est obtenue par une augmentation de la densité de courant de 50 à 350 A•m‑2 pour un temps d’électrolyse de 15 min et des concentrations en huile de coupe de 1 % (p/p), 2 % (p/p) et 4 %(p/p). Un rendement d’élimination en turbidité de 99 % a été obtenu pour une émulsion à 4 % (p/p), une densité de courant de 150 A•m‑2 et un temps d’électrolyse de 120 min.
Le suivi de la cinétique de dissolution de l’électrode de fer sur une période de 120 minutes a montré qu’une même efficacité du procédé peut être obtenue par une diminution du temps d’électrolyse et une augmentation de la densité de courant.
Une étude comparative des performances de l’électrocoagulation et de la coagulation-floculation au chlorure ferrique hydraté (FeCl3•6H2O), vis-à-vis de la déstabilisation d’une émulsion d’huile de coupe, a été réalisée. Elle a mis en évidence l’avantage de la coagulation-floculation pour l’émulsion à 1 % (p/p), pour les différentes densités de courant testées en électrocoagulation. Par contre, les rendements d’élimination pour les deux procédés sont sensiblement similaires pour les émulsions plus concentrées (2 % (p/p) et 4 % (p/p)), pour une densité de courant de 150 A•m‑2. Le pH des émulsions obtenu par les deux procédés après le traitement est différent. Le milieu reste alcalin dans l’électrocoagulation et il devient acide dans la coagulation floculation.
Mots clés:
- électrocoagulation,
- émulsion (huile/eau),
- huile de coupe,
- électrodes de fer,
- déstabilisation,
- turbidité,
- coagulation-floculation,
- électrolyse
Abstract
This work focuses on the breakdown of an Algerian cutting oil emulsion (Tasfalout 22/B) by batch electrocoagulation (EC) using iron electrodes. The efficiency of the process was estimated from turbidity measurements. An improved efficiency of destabilization was obtained by increasing the current density from 50 to 350 A•m‑2, over an electrolysis time of 15 min and using cutting oil concentrations of 1% (w/w), 2% (w/w) and 4% (w/w). Monitoring of the kinetics of the electrode dissolution over a period of 120 min showed that a similar process efficiency was obtained by decreasing the electrolysis time and by increasing the current density. A 99% removal of turbidity was obtained for an emulsion of 4% (w/w) with a current density of 150 A•m‑2 and an electrolysis time of 120 min.
A comparison of the performances of electrocoagulation and of coagulation-flocculation with hydrated ferric chloride (FeCl3•6H2O) processes was carried out, with respect to the destabilization of cutting oil emulsion. This comparison highlighted the advantage of the coagulation-flocculation process for the of 1% (w/w) emulsion at different electrocoagulation current densities. However, for a current density of 150 A•m‑2, the removal efficiency of both processes was similar for the emulsion with higher cutting oil concentrations (2% (w/w) and 4% (w/w)). The pH of the emulsion obtained by the two processes following treatment varied. The medium remained alkaline during the electrocoagulation process and became acidic during the coagulation-flocculation process.
Keys-words:
- electrocoagulation,
- emulsion (oil/water),
- cutting oil,
- iron electrodes,
- destabilization,
- turbidity,
- coagulation-flocculation,
- electrolysis
Parties annexes
Références bibliographiques
- ABUZAID J.S., A.A. BUKHARI et Z.M. AL-HAMOUZ (2000). Ground water coagulation using soluble stainless steel electrodes. Adv. Environ. Res., 6, 325-333.
- ADHOUM N. et L. MONSER (2004). Decolourization and removal of phenolic compound from olive mill wastewaters by electrocoagulation. Chem. Eng. Process., 43, 1281-1287.
- AMOSOV V.V., A.G. ZIL’BRTMAN et al. (1976). Experience in local treatment of wastewaters from petrochemical production. Chem. Technol. Fuel Oils, 12, 11-12, 850-852.
- BAKLAN V.Y et I.P. KOLESNIKOVA (1996). Influence of electrode material on the electrocoagulation. J. Aerosol Sci., 27, supplement 1: S209-S210.
- BENSADOK K., S. BENAMAR, F. LAPICQUE et G. NEZZAL (2008). Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. J. Hazard. Mater., 152, 423-430.
- BRANDON N.P., G.H. KELSALL, S. LEVINE et A.L. SMITH (1985). Interfacial electrical properties of electrogenerated bubbles. J. Appl. Electrochem., 15, 485-493.
- Cañizares P. F. Martínez, C. Jiménez, C. Sáez et M.A. Rodrigo (2008). Coagulation and electrocoagulation of oil in water emulsion. J. Hazard. Mater., 151, 44-51.
- CHEN G. (2004). Electrocoagulation technologies in wastewater treatment. Sep. Purif. Technol., 38, 11-41.
- CHEN-LU YANG (2007). Electrochemical coagulation for oily water demulsification. Sep. Purif. Technol., 54, 388‑395.
- CHEN X., G. CHEN et P.L. YUE (2002). Novel electrode system for electroflotation wastewater. Environ.Sci.Technol. 36, 778-783.
- DANESHVAR N., H. ASHASSI-SOKHABI et A. TIZPAR (2003). Decolorization of orange by electrocoagulation method. Sep. Purif. Technol., 31, 153-162.
- DO J.S. et M.L. CHEN (1994). Decolourization of dye-containing solutions by electrocoagulation. J. Appl. Electrochem., 24, 785-790.
- FEUILLADE G., S. GUERAUDE, Y. BRIZARD et C. LAHITTE (2001). L’électrocoagulation et la production d’eau potable; faisabilité, intérêt et performance. Dans : 4e Congrès International Gruttee. 22-23 novembre 2001. Limoges.
- HOLT P.K., G.W. BARTON et C.A. MITCHELL (2005). The future for electrocoagulation as a localized water treatment technology. Chemosphere, 59, 355-367.
- HOSNY A.Y. (1996). Separation oil from oil-water emulsion by electroflotation. Sep. Technol., 6, 9-17.
- HULSER P., U.A. KRUGER et F. BECK (1996). The cathodic corrosive of aluminum during the electrodeposition of paint: electrochemical measurements. Corrosion. Sci., 38, 47-57.
- IBANEZ J.G, M.M. TAKIMOTO et R.C. VASQUEZ (1995). Laboratory experiment on electrochemical remediation of the environment: electrocoagulation of oily wastewater. J. Chem. Educ., 72, 1050-1052.
- IBANEZ J.G., M.H. SINGH et Z. SZAFRA (1998). Laboratory experiments on electrochemical remediation of the environment. Part 4: color removal of simulated wastewater by electrocoagulation- electroflotation. J. Chem. Educ., 75, 1040-1041.
- JIANG J.Q., N. GRAHAM, C.A. ANDRE, G.H. KELSALL et N. BRANDON. Laboratory study of electro-coagulation-flotation for water treatment. Water Res., 36, 4064-4078.
- KETBAR D.R., R. MALLIKARJUNAN et S. VENKATACHALAM (1988). Size determination of electro generated gas bubbles. J. Electrochem. Soc. India, 37, 313.
- KETBAR D.R., R. MALLIKARJUNAN et S.VENKATACHALAM (1991). Electroflotation quartz fines. Intern. J. Min. Process., 31, 127-138.
- KHEMIS M., J.P. LECLERC, G. TANGUY, G. VALENTIN et F. LAPICQUE (2006). Treatment of industrial liquid wastes by electrocoagulation. Experimental investigations and an interpretation model. Chem. Eng. Sci., 61, 3602‑3609.
- KHOSLA N.K., S. VENKACHALAM et P. SONRASUNDARAM. Pulsed electrogeneration of bubbles for electroflotation. J. Appl. Electrochem., 21, 986‑990.
- KOBYA M., O.T. CAN et M. BAYRAMOGLU (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminium electrodes. J. Hazard. Mater., B100, 163-178.
- KOIDE K., S. KATOS, Y. TANAKA et H. KUBOTA (1968). Bubble generated from porous plate. Chem. Eng. Sci., 1, 51-56.
- LABANOWSKI J. et G. FEUILLADE (2006). Étude de la matière organique réfractaire à la coagulation floculation et à son procédé alternatif, l’électrocoagulation, lors du traitement d’un lixiviat stabilisé. Déchets Sci. Tech., 41, 10‑14.
- LARUE O., E. VOROBIEV, C. VU et B. DURAND (2003). Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions. Sep. Purif. Technol., 31, 177-192.
- MAMERI N., A.R. YEDDOU, H. LOUNICI, D. BELHOUCINE, H. GRIB et B. BARIOU (1998). Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminum electrodes. Water Res., 32, 1604‑1612.
- MARRUCCI G. et L. NICODEMO (1967). Coalescence of gaz bubbles in aqueous solutions of inorganics electrolytes. Chem. Eng.Sci., 22, 1257-1265.
- MATTESON M.J., R.L. DOBSON, R.W. GLENN, N.S. KUKUNOOR, W.H. WAITS et E.J. CLAYFIELD (1995). Electrocoagulation and separation of aqueous suspensions of ultrafine particles. Colloid. Surf. A: Physicochem. Eng. Aspects, 104, 101-109.
- MOLLAH M.A., R. SCHENNAC, J.R. PARGA et D.L. COCKE (2001). Electrocoagulation (EC). Science and application . J. Hazard. Mater., B.84, 29-41.
- NIKOLAEV N.V., A.S. KOZLOVSKI et I.I. UTKIN (1982). Treating natural waters in small water systems by filtration with electrocoagulation. Soviet J. Water Chem. Technol., 4, 244-247.
- NOVIKOVA S.P., T.L. SHKORBATOVA et E.Y. SOKOL (1982). Purification of effluents from the production of synthetic detergents by electrocoagulation. Soviet J. Water Chem. Technol., 4, 353-357.
- OLIVEIRA R.C.G., G.GONZALEZ et J.F. OLIVEIRA (1999). Interfacial studies on dissolved gas flotation of oil droplets for water purification. Colloids. Surf. A: Physicochem. Eng. Aspects, 154, 127-135.
- OSIPENKO V.D et P.I. POGORELYI (1977). Electrocoagulation neutralization of chromium containing effluent. Metallurgist, 21, 44-45.
- PICARD T., G. CATHALIFAUD-FEUILLADE, M. MAZET et C. VANDENSTEEDAM (2000). Cathodic dissolution in the electrocoagulation process using aluminium electrode. J. Environ. Monit., 2, 77-80.
- PINOTTI A. et N. ZARITZKY (2001). Effect of aluminium sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes. Waste Manag., 21, 535-542.
- POURBAIX M. (1974). Atlas of electrochemical equilibria in aqueous solutions. 2e édition, Pergamon Press, Houston, 1974.
- RAJINDER P. (1994). Techniques for measuring the composition (oil and water content) – a state of the art review. Colloids Surf. A, 84, 141-193.
- RIOS G., C. PAZO et J. COCA (1998). Destabilisation of cutting oil emulsion using inorganic salts as coagulants. J.Colloids Surf., 138, 383-389.
- RUBACH S. et I.F. SAUR (1997). Onshore testing of produced waster by electrocoagulation. Filt. Sep., Octobre, 877-882.
- SAUR I.F., S. RUBACH, J.S. FORDE, G. KJAERHEIM et U. SYVERSEN (1996). Electroflocculation: removal of oil, heavy metal and organic compounds from oil-in-water emulsion. Filt. Sep., 33, 295-303.
- SHEN F., X. CHEN, P. GAO et G.CHEN (2003). Electrochemical removal of fluoride ions from industrial wastewater. Chem. Eng. Sci., 58, 987-993.
- SHUCAI Z. (1990). Étude des traitements physico-chimiques d’épuration des émulsions d’huile de coupe. Influence de leur formulation. Thèse de Doctorat, Institut National Des Sciences Appliquées de Toulouse, France, 195 p.
- STRICKLAND J.R. (1980). Laboratory results of cleaning produced water by gaz flotation. Soc. Petrol. Eng. J., June 1980, 175‑190.
- SZPYRKOWICZ L. (2005). Hydrodynamic effects on the performance of electro-coagulation/electro-flotation for the removal of dyes from textile wastewater. Ind. Eng. Chem. Res., 44, 7844-7853.
- VIK E.A., D.A. CARLSON, A.S. EIKUM et E.T. GLESSING (1984). Electrocoagulation of potable water. Water Res.,18, 1355-1360.
- XINHUA X. et XIANGFENG Z. (2004). Treatment of refectory oily wastewater by electro-coagulation process. Chemosphere, 56, 889-894.
- XUEMING C., GUOHUA C. et P. LOCK YUE (2000). Separation of polluants from restaurant wastewater by electrocoagulation. Sep. Purif. Technol., 19, 65-76.
- ZOUBOULIS A.I. et A. AVRANAS (2000). Treatment of oil-in-water emulsion by coagulation and dissolved-air flotation. Colloids Surf. A: Physicochem. Eng. Aspects, 172, 153-161.