Résumés
Résumé
Cette synthèse traite des procédés d’oxydation avancée (POA) pour le traitement des eaux et des effluents industriels. Ces procédés mettent pour la plupart en combinaison deux ou trois réactifs (oxydants) afin de produire des radicaux hydroxyles. Les radicaux libres sont des espèces hautement actives capables de réagir rapidement et de manière non sélective sur la plupart des composés organiques, réputés difficilement oxydables par voie biologique ou par des traitements chimiques conventionnels. Les POA peuvent être subdivisés en quatre groupes : les procédés d’oxydation chimique en phase homogène (H2O2/Fe2+ et H2O2/O3), les procédés photocatalytiques en phase homogène et/ou hétérogène (H2O2/UV, O3/UV et Fe2+/H2O2/UV; TiO2/UV), les procédés d’oxydation sonochimique et les procédés d’oxydation électrochimique. Le couplage H2O2/Fe2+ représente le système d’oxydation avancée le plus connu et le moins complexe, lequel est souvent employé dans le traitement des effluents industriels. Cependant, dans le domaine de la potabilisation des eaux, le système le plus utilisé et le plus éprouvé est le couplage H2O2/O3 couramment employé pour l’élimination des composés phytosanitaires (pesticides). Les procédés d’oxydation électrochimiques, photocatalytiques et sonochimiques sont des technologies qui nécessitent en général moins de réactif et sont faciles d’automatisation par comparaison aux autres POA. Ces procédés sont présentement en pleine expansion dans le domaine des technologies environnementales, ceci afin d’améliorer les systèmes existants de traitement des eaux usées municipales et industrielles, ou à remplacer les technologies conventionnelles peu efficaces pour l’enlèvement de contaminants organiques réfractaires, inorganiques et microbiens. De nombreuses études réalisées à l’échelle laboratoire ont clairement prouvé l’efficacité des POA pour le traitement de divers effluents. Cependant, le développement de ces procédés dans les filières de traitement des eaux reste encore limité en raison des coûts d’investissement et des coûts opératoires associés. Des solutions et stratégies sont proposées dans ce document, telles que le développement de procédés hybrides et leur couplage avec des traitements biologiques conventionnels, et ce, afin de pallier certaines contraintes spécifiques des POA et faciliter ainsi leur insertion dans les filières de traitement des eaux et des effluents industriels. Ce document a pour objectif de faire une synthèse des différents POA, d’en expliquer leur principe de fonctionnement, de déterminer les différents paramètres les gouvernant, ainsi que leurs applications dans le traitement des eaux et des effluents.
Mots clés:
- Procédé d’oxydation avancée,
- radicaux hydroxyles,
- composé organique réfractaire,
- eau potable,
- effluent industriel
Abstract
This review deals with advanced oxidation processes (AOP) for water and wastewater treatment. Most AOPs combine two or three chemical oxidants in order to produce hydroxyl radicals. These free radicals are species capable of oxidizing numerous complex organic, non-chemically oxidizable or difficulty oxidizable compounds. They efficiently react with carbon-carbon double bonds and attack the aromatic nucleus, which are prevalent features of refractory organic compounds. The AOPs can be divided into four groups: homogenous chemical oxidation processes (H2O2/Fe2+ and H2O2/O3), homogenous/heterogeneous photocatalytic processes (H2O2/UV, O3/UV and Fe2+/H2O2/UV; TiO2/UV), sonification oxidation processes (ultrasound oxidation) and electrochemical oxidation processes. The H2O2/Fe2+ system represents the most common and simplest AOP, which is often employed for the treatment of industrial effluents. However for drinking water treatment, the H2O2/O3 system is commonly used for pesticide removal. Electrochemical, photo-catalytic and sonification oxidation processes require fewer chemicals and are more easily automated than other AOPs. These technologies are effective in improving the treatment of industrial wastes, wastewater and drinking water, for example after their integration into a treatment plant or after their replacement of conventional processes that are found to less effectively eliminate specific organic and inorganic pollutants. The goal of this paper is to review published literature on the use of AOPs for water and wastewater treatment and the removal of refractory pollutants. Specifically, the objectives are: (i) to understand the theory and mechanisms of pollutant removal in AOPs, (ii) to provide a database for AOP applications, and (iii) to suggest new research directions for the development of AOPs.
Key words:
- Advanced oxidation process,
- hydroxyl radical,
- refractory organic compounds,
- drinking water,
- industrial wastewater
Parties annexes
Références bibliographiques
- AGUIAR A. (1992). Dégradation de quelques pesticides en milieux aqueux lors de l’oxydation du Fe(II) en Fe(III) par le peroxyde d’hydrogène. Thèse de Doctorat, Université de Poitiers, Poitiers, France, 158 p.
- AGUIAR A., F. CARBONNIÈRE, H. PAILLARD et B. LEGUBE (1993). Oxydation des pesticides et coagulation des substances humiques par le peroxyde d’hydrogène à faibles doses et le fer ferreux. Water Supply, 11, 129-138.
- AKMEHMET B.I. et M. OTKER (2004). Pre-treatment of antibiotic formulation wastewater by O3, O3/H2O2, and O3/UV processes. Turkish J. Eng. Environ. Sci., 28, 325‑331.
- AL-ABED S.R., J.-L. CHEN, V.R. KUKAINIS, S. LIANG et K.M. KORAN (2001). The effect of voltage on electrochemical degradation of trichloroethylene. Dans : Symposia Papers Presented before the Division Environmental Chemistry American Chemical Society, San Diego, CA.
- AMAT A.M., A. ARQUES, M.A. MIRANDA, R. VINCENTE et S. SEGUI (2007). Degradation of two commercial anionic surfactants by means of ozone and/or UV irradiation. Environ. Eng. Sci., 24, 790-794.
- ANDREOZZI R., V. CAPRIO, R. MAROTTA et D.VOGNA (2003). Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res., 37, 993–1004.
- ANDREOZZI R., V. CAPRIO, R. MAROTTA et A. RADOVNIKOVIC (2003). Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. J. Hazard. Mater., 103, 233–246.
- AURIOL M., Y. FILALI-MEKNASSI et R.D. TYAGI (2007). Présence et devenir des hormones stéroïdiennes dans les stations de traitement des eaux usées. Rev. Sci. Eau, 20, 89-108.
- AZABOU S., W. NAJJAR, A. GARGOUBI, A. GHORBEL et S. SAYADI (2007). Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Part II. Degradation and detoxification of low-molecular mass phenolic compounds in model and real effluent. Appl. Cat. B: Environ., 77, 166-174.
- BARB G., J. BAXENDALE et R. HARGRAVE (1951). Reaction of ferrous and ferric ions with hydrogen peroxide. Trans. Faraday Soc., 47, 462-500, 591-615.
- BARBENI M., C. MINERO et L. PELLIZZETTI (1987). Chemical degradation of chlorophenols with Fenton’s reagent. Chemosphere, 16, 2225-2232.
- BERGER J.A. et A.G. MARR (1960). Sonic disruption of spores of Bacillus cereus. J. Gen. Microbiol., 221, 147-157.
- BERLAN J., F. TRABELSI, H. DELMAS, A. WILHELM et M. PETRIGNANI (1994). Oxidative degradation of phenol in aqueous media using ultrasound. Ultrason. Sonochem., 1, S97-S102.
- BHOWMICK M. et M.J. SEMMENS (1994). Ultraviolet photo-oxidation for the destruction of VOCs in air. Water Res., 28, 2407-2415.
- BIELSKI B.H.J., D.E. CABELLI, R.J. ARUDI et A.B. ROSS (1985). Reactivity of HO2/O2- radical in aqueous solution. J. Phys. Ref. Data, 14, 1041-1100.
- BOCKRIS J., L. KABA et G. HITCHENS (1990). Electrochemical incineration of wastes. J. Electrochem. Soc., 137 1341-1345.
- BRILLAS E. et J. CASADO (2002). Aniline degradation by electro-Fenton and proxi-coagulation processes using a flow reactor wastewater treatment. Chemosphere, 47, 241‑248.
- BRILLAS E., J.C. CALPE et J. CASADO (1999). Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res., 34, 2253-2262.
- BRILLAS E., R.M. BASTIDA, E.F. LLOSA et J. CASADO (1995). Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-Fed cathode. Electrochem. Sci. Technol., 142, 1733-1741.
- BUNCE N.J. (1990). Environmental Chemistry. Wuerz Publishing, Winnipeg, Manitoba, Canada, 376 p.
- BUXTON G.U., C.L. GREENSTOCK, W.C HELMAN et A.B. ROSS (1988). Critical review of rate constant for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO/O-) in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513-759.
- CALVIN P. et C. POON (1997). Electroflotation for groundwater decontamination. J. Hazard. Mater., 55, 159‑170.
- CANIZARES P., C. MARTINEZ, M. DIAZ, J. GARCIA-GOMEZ et M. A. RODRIGO (2002). Electrochemical oxidation of aqueous phenol wastes using active and nonactive electrodes. J. Electrochem. Soc., 149, 118-124.
- CANIZARES P., J. LOBATO, R. PAZ, M.A. RODRIGO, C.J. SAEZ et M.A. RODRIGO (2005). Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res., 39, 2687-2703.
- CHROMOSTAT N., J. DE LAAT, M. DORÉ, H. SUTY et M. POUILLOT (1993). Étude de la dégradation de triazine par O3/H2O2 et O3. Cinétique et sous-produits de dégradation. Water Supply, 11, 149-157.
- CHIOU C.H., C.Y. WU et R.-S. JUANG (2008). Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Separ. Purif. Technol., 62, 559–564.
- COLEMAN H.M., B.R. EGGINS, J.A. BYRNE, F.L. PALMER et E. KING (2000). Photocatalytic degradation of 17-[beta]-oestradiol on immibilised TiO2. Appl. Catal. B Environ, 24, L1-5.
- COLOBERT L., B. MONTAGNON. et C. NOFRE (1962). Effet microbicide sur Escherichia coli de systèmes chimiques générateurs du radical libre hydroxyle. Mécanisme de l’activité bactéricide du peroxyde d’hydrogène et de l’acide ascorbique. Ann. Inst. Pasteur, 102, 278-291.
- COMNINELLIS C. (1992). Electrochemical treatment of wastewater containing phenol. Trans. Inst. Chem. Eng., 70, 219-224.
- COMNINELLIS C., P. SEIGNEZ, P. PÉRINGER et E. PLATTNER (1992). Dégradation des polluants organiques industriels : traitement électrochimique, biologique et leur couplage. Swiss Chem., 14, 25-30.
- CRISSOT F. (1996). Oxydation catalytique de composés organiques aqueux par le peroxyde d’hydrogène en phase hétérogène. Thèse de Doctorat, Université de Poitiers, École Supérieure d’Ingénieurs de Poitiers, Poitier, France, 152 p.
- DE A.K., B.K. DUTTA et S. BHATTACHARJEE (2006). Reaction kinetics for the degradation of phenol and chlorinated phenols using Fenton’s reagent. Environ. Progress, 25, 64-71.
- DENG Y. et J.D. ENGLEHARDT (2006). Treatment of landfill leachate by Fenton process. Water Res., 40, 3683‑3694.
- DORÉ M. (1989). Chimie des oxydants et traitement des eaux. Tec. Doc. Lavoisier (Éditeur), Paris, France, 505 p.
- DROGUI P., S. ELMALEH, M. RUMEAU, C. BERNARD et A. RAMBAUD (2001). Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell. Water Res., 35, 3235-3241.
- DROGUI P., J.F. BLAIS et G. MERCIER (2007). Review of electrochemical technologies for environmental applications. Recent Patent Eng., 1, 257-272.
- DUGUET J.P. et L. CARPENTIER (1989). Technique de désinfection alternative. Lyonnaise des Eaux, Veille Technologique, Novembre, 19 p.
- DURAN MORENO A., B.A. FONTANA-URIBE et R.M. RAMIREZ ZAMORA (2004). Electro-Fenton as a feasible advanced treatment process to produce reclaimed water. Water Sci. Technol., 50, 83-90.
- ECKENFELDER W., A.R. BOWERS et J.A. ROTH (1992). Chemical oxidation: technologies for the nineties. Dans: Chemical Oxidation: Technology for the Nineties, Proceedings of the first international symposium, Vanderbilt University, Nashville, Tennessee, 20 au 22 février 1991, Technomic Pub. Co., Lancaster, PA.
- EL-DEIN A.M. (2002). Oxidation kinetics of the azo dye reactive black 5 using H2O2/UV and aerobic biological treatment. Verfahrenstechnik, 762, 1-134.
- ENTEZARI M.H., C. PETRIER, P. DEVIDAL (2003). Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason. Sonochem., 10, 103-108.
- ESPLUGAS S., J. GIMENEZ, S. CONTRERAS, E. PASCUAL et M. RODRIGUEZ (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Res., 36, 1034‑1042.
- FENG C., N. SUGIURA, S. SHIMADA et T. MAEKAWA (2003). Development of high performance electrochemical wastewater treatment system. J. Hazard. Mater., B103, 65‑78.
- FLOTRON V., C. DELTEIL, A. BERMOND et V. CAMEL (2003). Remediation of matrices contaminated by polycyclic aromatic hydrocarbon: use of Fenton’s reagent. Polycyclic Aromatic Compounds, 23, 353-376.
- GALEY C. et D. PASLAWSKI (1993). Élimination des micropolluants par l’ozone couplé avec le peroxyde d’hydrogène dans le traitement de potabilisation des eaux. L’Eau, L’Industrie, Les Nuisances, 161, 46-49.
- GANDINI D., C. COMNINELLIS, N.B. Tahar et A. Savall (1998). Électrodépollution : Traitement électrochimique des eaux résiduaires chargées en matières organiques toxiques. Actualité Chimique, 10, 68-73.
- GARNERONE A. (1979). Contribution à l’étude des mécanismes d’action des agents antiseptiques dans les eaux : Application à la désinfection électrochimique indirecte. Thèse de Doctorat, Institut National Polytechnique de Grenoble, France, 165 p.
- GEBHARDT W. et H.F. SCHROEDER (2007). Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J. Chromatography, 1160, 34-43.
- GOEL R.K., J.R.V. FLORA et J. FERRY (2003). Mechanisms for naphthalene removal during electrolytic aeration. Water Res., 37, 891-901.
- GOGATE P.R. et A.B. PANDIT, (2000a). Engineering design methods for cavitational reactors I: sonochemical reactors. AIChE J., 46, 372.
- GOGATE P.R. et A.B. PANDIT (2001). Hydrodynamic cavitation reactors: A state of the art review. Rev. Chem. Eng., 17,1-85.
- GOGATE P.R. et A.B. PANDIT (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res., 8, 501-551.
- GONCHARUK V.V., N.G. POTAPCHENKO, O.S. SAVLUK, V.N. KOSINOVA et A.N. SOVA (2003). Study of various conditions for O3/UV disinfection of water. Khimiya i Tecknologiya Vody, 25, 487-496.
- GÖZMEN B., M.A. OTURAN, N. OTURAN et O. ERBATUR (2003). Indirect electrochemical treatment of biphenol A in water via electrochemical generated Fenton’s reagent. Environ. Sci. Technol., 37, 3716-3723.
- GUIVARCH Z.E. (2004). Traitement des polluants organiques en milieux aqueux par procédé électrochimique d’oxydation avancée «Électro-Fenton». Application à la minéralisation des colorants synthétiques. Thèse de Doctorat, Université de Marne-la-Vallée, Institut Francilien des Géosciences, Marne-la-Vallée, France, 235 p.
- HAAG W. et C.C.D. YAO (1992). Rate constant for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol., 26, 1005-1013.
- HABER P. et J. WEISS (1934). The catalytic decomposition of hydrogen by iron salts. Proc. Royal Soc., A147, 332-351.
- HELMY S.M., S. EL RAFIE et M.Y. GHALY (2003). Bioremediation post-photo-oxidation and coagulation for black liquor effluent treatment. Desalination, 158, 331‑339.
- HERNANDEZ R., M. ZAPPI, J. COLLUCI et R. JONES (2002). Comparing the performance of various advanced oxidation process for treatment of acetone contaminated water. J. Hazard. Mater., 92, 33-50.
- HILLIS M.R. (1970). Treatment of effluents by electrolytic methods in Britain. Water. Pollut. Control, 108, 22-27.
- HSING H.J., P.C. CHIANG, E.E. CHANG et M.Y. CHEN (2007). The decolorization and mineralization of acid orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. J. Hazard. Mater., 141, 8-16.
- HUA I. et M.R. HOFFMANN (1997). Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ. Sci. Technol., 31, 2237-2243.
- IJEPLAAR G.F., R.T.MEIJERS et R. HOPMAN (2000). Oxidation of herbicides in groundwater by the Fenton process: a realistic alternative for O3/H2O2 treatment? Ozone Sci. Eng., 22, 607‑616.
- IKEHATA K et M.G. EL-DIN (2006). Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J. Environ. Eng. Sci., 5, 81-135.
- IKEHATA K, N.J. NAGHASHKAR et M.G. EL-DIN (2006). Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng., 28, 353-414.
- IRMAK S., O. ERBATUR et A. AKGERMAN (2005). Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J. Hazard. Mater., 126, 54-62.
- JÜRGENS M.D., K.I.E. HOLTHAUS, A.C. JOHNSON, J.J.L. SMITH, M. HETHERIDGE et R.J. WILLIAMS (2002). The potential for estradiol and ethinylestradiol degradation in English rivers. Environ. Toxicol. Chem., 21, 480-488.
- KANG S.F., C.H. LIAO et H.P. HUNG (1999). Peroxidation treatment of dye manufacturing wastewaters in the presence of ultraviolet light and ferrous ions. J. Hazard. Mater.B., 65, 317-333.
- KANG S.F., C.H. LIAO et S.T. PO (2000). Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere, 41, 1287-1294.
- KARAM L.R., D.S. BERGTOLDS et M.G. SIMIC (1991). Biomarkers of HO radicals damage in-vivo. Free Radical. Res., 12/13, 11-16.
- KARPEL VEL LEITNER N. et M. DORÉ (1997). Mécanisme d’action des radicaux OH° sur les acides glycolique, glyoxylique, acétique et oxalique en solution aqueuse : Incidence sur la consommation de peroxyde d’hydrogène dans les systèmes H2O2/UV et O3/H2O2. Water Res., 31, 1383-1397.
- KUO W.G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Res., 26, 881-886.
- KUO W.G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Res., 26, 881-886.
- KULKARNI A.G., R. TANDON et R.M. MATHUR (2006). Some chemical aspects of color removal from effluents of paper industry. Ippta J., 18, 55-61.
- KWON B.G., D.S. LEE, N. KANG et J. YOON (1999). Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Res., 33, 2110.
- LAFI W.K. et Z. AL-QODAH (2006). Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. J. Hazard. Mater., 137, 489-497.
- LAU T.K., W. CHU et N.GRAHAM (2007). Degradation of the endocrine disruptor carbofuran by UV, O3 and O3/UV. Water Sci. Technol., 55, 275-280.
- LI Z.M., P.J. SHEA et S.D. COMFORT (1997a). Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries. Environ. Eng. Sci., 14, 55-66.
- LI Z.M., S.D. COMFORT et P.J. SHEA (1997b). Destruction of 2,4,6-trinitrotoluene by Fenton oxidation. J. Environ. Qual., 26, 480-487.
- LIN S.H. et C.C. LO (1997). Fenton process for treatment of desizing wastewater. Water Res., 31, 2050-2056.
- LORIMER, J.P., T.J. MASON, (1987). Sonochemistry. Part1 – The physical aspects. Chem. Soc. Rev., 16, 239-274.
- MA J., W. SONG, C. CHEN, W. MA, J. ZHAO et Y. TANG (2005). Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ. Sci. Technol., 39, 5810-5815.
- MASON T.J. (1990). A survey of commercially available sources of ultrasound suitable for sonochemistry. Sonochemistry – Uses of Ultrasound in Chemistry. Royal Society of Chemistry, Cambridge UK, 158 p.
- MAESTRE P. (1991). Radical hydroxyle et métaux redox : application à la toxicité des quinones. Thèse de Doctorat, Université de Toulouse, Toulouse, France, 237 p.
- MARTINEZ-HUITLE C.A et S. FERRO (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35, 1324-1340.
- MATSUE T., M. FUJIHIRA et T. OSA (1981). Oxidation of alkylbenzenes by electrogenerated hydroxyl radicals. J. Electrochem. Soc., 128, 2565-2569.
- MENDIA L. (1982). Electrochemical processes for wastewater treatment. Water Sci. Technol., 14, 331-344.
- MERTZ J. et W. WATERS (1949). Some oxidation involving the free hydroxyl radical. J. Chem. Soc., 15, 515-525.
- MILLET M. (1992a). L’oxygène et les radicaux libres (1re partie). Bios, 23, 67-70.
- MILLET M. (1992b). L’oxygène et les radicaux libres (2e partie). Bios, 23, 45-50.
- MILLS A. et S. LE HUNTE (1997). An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem., 108, 1-35.
- MIRANDA M.A., A.M. AMAT et A. ARQUES (2001). Abatement of the major contaminants present in olive oil industry wastewaters by different oxidation methods: Ozone and/or UV radiation versus solar light. Water Sci. Technol., 44, 325-330.
- MOISEEV A., H. SCHROEDER, M. KOTSARIDOU-NAGEL, S.U. GEISSEN et A. VOGELPOHL (2004). Photocatalytic polishing of paper-mill effluents. Water Sci. Technol., 49, 325-330.
- MURUGANANTHAN M., S.YOSHIHARA, T.RAKUMA, N. UEHARA et T. SHIRAKASSHI (2007). Electrochemical degradation of 17β-Estradiol (E2) at boron-doped diamond (Si/BDD) thin electrode. Electrochim. Acta, 52, 3242-3249.
- MURUGANANTHAN M., S.YOSHIHARA, T.RAKUMA, T. SHIRAKASSHI (2008). Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. J. Hazard. Mater., 154, 213-220.
- NAFFRECHOUX E., E COMBET, B. FANGET et C. PETRIER (2003). Reduction of chloroform formation potential of humic acid by sonolys and ultraviolet irradiation. Water Res., 37, 1948-1952.
- NAJJAR W., S. AZABOU, S. SAYADI et A. GHORBEL (2007). Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Appl. Cat. B Environ., 74, 11-18.
- NAKUI H., K. OKITSU, Y. MAEDA, R. NISHIMURA (2007). The effect of pH on sonochemical degradation of hydrazine. Ultrason. Sonochem., 14, 627–632.
- OHKO Y., I. ANDO, C. NIWA, T. TATSUMA, T. YAMAMURA, T. NAKASHIMA, Y. KUBOTA et A. FUJISHIMA (2001). Degradation of bisphenol A in water by TiO2, photocatalyst. Environ. Sci. Technol., 35, 2365‑2368.
- OTURAN M.A., J.J. AARON, N. OTURAN et J. PINSON (1999). Degradation of chlorophenoxy acid herbicides in aqueous media, using a novel electrochemical method. Pestic. Sci., 55, 558-562.
- OTURAN M.A., N. OTURAN, C. LAHITTE et S. TRÉVIN (2001). Production of hydroxyl radical by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutant: pentachlorophenol. J. Electroanal. Chem., 507, 96-102.
- OTURAN N.M et J. PINSON (1992). Polyhydroxylation of salicylic acid by electrochemically generated HOo radicals. New J. Chem., 16, 705-710.
- PAILLARD H. (1994). Étude de la minéralisation de la matière organique dissoute en milieu aqueux dilué par ozonation, oxydation avancée O3/H2O2 et ozonation catalytique hétérogène. Thèse de Doctorat de l’université de Poitiers, Poitiers, France, 224 p.
- PAILLARD H., R. BRUNET et M. DORÉ (1988). Conditions optimales d’application du système oxydant ozone-peroxyde d’hydrogène. Water Res., 22, 91-103.
- PANIZZA M., M. ZOLEZZI et C. NICOLELLA (2006). Biological and electrochemical oxidation of naphthalenesulfonates. J. Chem. Technol. Biotechnol., 81, 225-232.
- PARSONS S. (2004). Advanced oxidation processes for water and wastewater treatment. IWA Publishing, Alliance House, Londres, Angleterre, 356 p.
- PRAKASH N.S., E.T. PUTTAIAH, B.R. KIRAN, B.K. HARISH et K.M. MAHADEVAN (2007). Photo oxidation of textile industrial effluent in the presence of semiconductor particles by solar exposure. Res. J. Chem. Environ., 11, 73-77.
- PETRIER C., Y. JIANG, A. FRANCONY et M.F. LAMY (1999). Aromatics and chloroaromatics sonochemical degradation. Yields and byproducts. Ham. Ber. Siedlungswasserwirtschaft (Ultrasound in Environmental Engineering), 25, 23-37.
- PIGNATELLO J.J. (1992). Dark and photoassisted Fe3+‑catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol., 26, 944-951.
- PILLAUD J.L. (1987). Application de l’oxydation anodique au traitement de certains effluents industriels. Thèse de Doctorat, Université de Montpellier II, Montpellier, France, 202 p.
- POTTER F.J. et J.A. ROTH (1993). Oxidation of chlorinated phenols using Fenton’s reagent. Hazard. Waste Hazard. Mater.,10, 157-170.
- PULGARIN C, N. ADLER, P. PERINGER et C. COMNINELLIS (1994). Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Res., 28, 887-893.
- RAJESHWAR K. et J.G. IBANEZ (1997). Environmental electrochemistry. Fundamentals and applications in pollution abatement. Academic Press, Londres, Angleterre, 776 p.
- RIEZ P., D. BERDAHL et C.L. CHRISTMAN (1985). Free radical generation by ultrasound in aquaous and nonaquaous solutions. Environ. Health Perspect., 64, 233‑252.
- SANCHEZ-PRADO L., R. BARRO, C. GARCIA-JARES, M. LLOMPART, M. LORES, C. PETRAKIS, N. KALOGERAKIS, D. MANTZAVINOS et E. PSILLAKIS (2008). Sonochemical degradation of triclosan in water and wastewater. Ultrason. Sonochem., 15, 689–694.
- SAULEDA R. et E. BRILLAS (2001). Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation with Fe2+ and UVA light. Appl. Cat. B. Environ., 29, 135-145.
- SCHALLER V. (1996). Oxydation électrochimique du phénol sur des électrodes du type métal support/dépôt conducteur. Thèse de Doctorat, École Polytechnique Fédérale de Lausanne, Lausanne, Suisse, 250 p.
- SERVOS M.R., D.T. BENNIE, B.K. BURNISON, A. JURKOVIC, R. MCINNIS, T. NEHELI, A. SCHNELL, S.A. SMYTH et T.A. TERNES (2005). Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci. Tot. Environ., 336, 155-170.
- SHANER E.O. (1964). Augmentation of bactericidal action of germicides with ultrasound. J. Acoust. Soc. Am., 36, 2238‑2239.
- SHU H.Y. et M.C. CHANG (2004). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes Pigm., 65, 25-31.
- SIVASANKAR T. et V.S. MOHOLKAR (2008). Physical features of sonochemical degradation of nitroaromatic pollutants. Chemosphere, 72, 795‑1806.
- SNYDER S.A., P. WERSTERHOFF, Y. YOON et D.L. SEDLAK (2003a). Pharmaceuticals, personal care products, and endocrine disruptors in water: Implication for water industry. Environ. Eng. Sci., 20, 449-469.
- SNYDER S.A., S.A. ADHAM, A.M. REDDING, F.S. CANNON, J. DECAROLIS, J. OPPENHEIMER, E.C. WERT et Y. YOON (2003b). Role of membrane and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 156-181.
- STAEHELIN S. et J. HOIGNE (1985). Decomposition of ozone in water rate of initiation by hydroxide and hydrogen peroxide. Environ. Sci. Technol., 16, 676-681.
- STRIEBIG B.A., J.M. SCHNEIDER, T.A. SPAEDER, M.R. MALLERY, R.J. HEINSOHN et F.S. CANNON (1996). Analysis of advanced oxidation process in a hybrid air pollution control system. Dans: Chemical oxidation: Technology for the nineties, Proceedings of the International Chemical Oxidation Association Symposium, 14 au 17 avril, Nashville, TN.
- STRIOLO P. (1992). Oxydation d’effluents organiques aqueux par le peroxyde d’hydrogène à haute température : Procédé W.P.O. Thèse de Doctorat, Institut National des Sciences Appliquées de Toulouse, Toulouse, France.
- SUN Y. et J.J. PIGNATELLO (1993). Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ. Sci. Technol., 27, 304-310.
- SUTY H., C. DE TRAVERSAY et M. COSTE (2003). Application of advanced oxidation processes: Present and future. Dans: Proceedings of the 3rd Conference on Oxidation Technologies for Water and Wastewater Treatment, 18 au 22 mai, Goslar, Allemagne, pp. 8.
- SZPYRKOWICZ L., S.N. KAUL et R.N. NETI (2005). Tannery wastewater treatment by electro-oxidation coupled with a biological process. J. Appl. Electrochem., 35, 381-390.
- TANAKA S., Y. NAKATA, T. KIMURA, M. YUSTIAWATI, M. KAWASAKI et H. KURAMITZ (2002). Electrochemical decomposition of bisphenol A using Pt/Ti and SnO2/Ti anodes. J. Appl. Electrochem., 32, 197-210.
- TANAKA, K., K. PADERMPOLE, T. HISANAGA. (2000). Photocatalytic degradation of commercial azo dyes. Water Res., 34, 327.
- TANG W.Z. et S. TASSOS (1997). Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent. Water Res., 31, 1117-1125.
- TONG S.P., Y.Q. CHU., C.A. MA et W.P. LIU (2005). The degradation of acetic acid and nitrobenzene in water by O3/UV. Zhongguo Huanjing Kexue, 25, 366-369.
- TRABELSI F., H. AÏT-LYAZIDI, B. RATSIMBA, A.M. WILHEM, H. DELMAS, P-L. FABRE et J. BERLAN (1996). Oxidation of phenol in wastewater by sonoelectrochemistry. Chem. Eng. Sci., 51, 1857-1865.
- USEPA (1997). Special report on environmental endocrine disruption: An effect assessment and analysis. U.S. Environmental Protection Agency, EPA/630/R-96/012, Washington, D.C.
- VAN CRAEYNEST K., H. VAN LANGENHOVE et R.M. STUETZ (2004). AOPs for VOCs and odour treatment. Dans : Advanced Oxidation Processes for Water and Wastewater Treatment. PARSONS S. (Éditeur), IWA Publishing, Alliance House, Londres, Angleterre, 356 p.
- VERNHES M.C., A. BENICHOU et P. PERNIN (1999). Éradication des amibes libres par l’utilisation de champs électriques pulsés. Dans : Journée d’Électrochimie, 1 au 4 juin 1999, Toulouse, France.
- VERSTRAETEN I.M., T. HEBERER, J.R. VOGEL, T. SPETH, S. ZUEHLKE et U. DUENNBIER (2003). Ocurrence of endocrine-disrupting and other wastewater compounds during water treatment with case studies from Lincol, Nebraska and Berlin, Germany. Pract. Period. Hazard. Toxic. Rad. Waste Manag. ASCE, 7, 253-263.
- VOGNA D., R. MAROTTA, R. ANDREOZZI, A. NAPOLITANO et M. D’ISCHIA (2004). Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine, Chemosphere, 54, 497‑505.
- WANG T.H, S.F. KANG et Y.H. LIN (1999). Comparison among Fenton-related processes to remove 2,4-dinitrophenol. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., A34, 1267-1281.
- WATTS R.J., A.P. JONES, P.H. CHEN et A. KENNY (1997). Mineral-catalyzed Fenton-like oxidation of sorbed chlorobenzenes. Water Environ. Res., 69, 269-275.
- WATTS R.J., M.D. UDELL et P.A. RAUCH (1990). Treatment of pentachlorophenol-contaminated soils using Fenton’s reagent. Hazard. Waste Hazard. Mater., 7, 335‑345.
- WU C.H. et C.L. CHANG (2006). Decolorization of reactive red 2 by advanced oxidation processses: comparative studies of homogeneous and heterogeneous systems. J. Hazard. Mater., 128, 265-272.
- WU C.H., H.Y. NG (2008). Degradation of C.I. Reactive Red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption. J. Hazard. Mater. 152, 120–127.
- WU C.H. (2007). Sonocatalytic degradation of C.I. reactive red 198 in H2O2-based systems. React. Kinet. Catal. Lett., 92, 377-384.
- XIONG F. (1990). Contribution à l’étude d’ozonisation des acides fulviques aquatiques. Thèse de 3e cycle, Université de Poitiers, Poitiers, France.
- XU Y.L., D.J. ZHONG et J.P. JIA (2008). Electrochemical-assisted photodegradation of Allura Red and textile effluent using a half-exposed rotating TiO2/Ti disc electrode. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng., 43, 503-510.
- YEON K.H., J.H. SONG, J. SHIM, S.H. MOON, Y.U. JEONG, (2007). H.Y. Joo Integrating electrochemical processes with electrodialysis reversal and electro-oxidation to minimize COD and T-N at wastewater treatment facilities of power plants. Desalination, 202, 400‑410.
- YONAR T., G.K. YONAR, K. KESTIOGLU et N. AZBAR (2005). Decolorization of textile effluent using homogeneous photochemical oxidation processes. Color. Technol., 121, 258-264.
- YOSHIDA M., B.D. LEE et M. HOSOMI (2000). Decomposition of aqueous tetrachloroethylene by Fenton oxidation treatment. Water Sci. Technol., 42, 203-208.
- ZWIENER C. et F.H. FRIMMEL (2000). Oxidative treatment of pharmaceuticals in water. Water Res., 34, 1881‑1885.