Résumés
Abstract
Biosorbents, especially those derived from seaweed (macroscopic algae) and alginate derivatives, exhibit high affinity for many metal ions. Because biosorbents are widely abundant (usually biodegradable) and less expensive than industrial synthetic adsorbents, they hold great potential for the removal of toxic metals from industrial effluents. Various studies have demonstrated the efficiency of living and non-living micro-organisms, such as bacteria, yeasts, moulds, micro-algae, cyanobacteria and biomass from water treatment sewage to remove metals from solution. Several types of organic and inorganic biomass have also been used as sorbent materials. In addition, by-products from the forestry industry, as well as agriculture waste and natural sorbents, have also been studied. This paper reviews and summarizes some key recent developments in these areas and it describes and discusses some specific applications of selected natural sorbents.
Key Words:
- Metal,
- removal,
- adsorption,
- alginate,
- seaweed,
- natural sorbent,
- wastewater,
- effluent,
- treatment
Résumé
Les biosorbants, particulièrement ceux préparés à partir des algues macroscopiques et des dérivés d’alginate, démontrent une très bonne capacité d’adsorption des ions métalliques toxiques. Ces biosorbants étant facilement disponibles (biodégradable) et moins coûteux que les adsorbants (industriels) synthétiques, ils présentent un grand potentiel d’utilisation pour l’enlèvement des métaux toxiques des effluents industriels. Les récents développements dans ce domaine ont été revus et font l’objet de la présente synthèse. Des applications spécifiques sont décrites et discutées.
Diverses technologies sont disponibles pour enlever les métaux des effluents industriels tels que la précipitation (sous forme d’hydroxydes ou de sulfures), la coprécipitation, l’adsorption, l’extraction par solvant, la cémentation, l’électrodéposition, l’électrocoagulation, l’échange d’ions et les technologies de séparation membranaire. Néanmoins, la plupart de ces techniques présentent des coûts d’exploitation élevés et, dans certains cas, sont limitées en terme de rendement d’élimination des métaux. Dans ce contexte, l’utilisation d’adsorbants naturels (dérivés de matière organique ou inorganique) constitue une alternative intéressante aux produits synthétiques. De nombreux articles ont d’ailleurs été publiés au cours des dernières années faisant état de la performance d’une grande variété d’adsorbants naturels pour enlever les métaux des effluents.
Plusieurs espèces d’algues marines ont aussi démontré des propriétés pour adsorber les métaux, mais les algues marines brunes, telles que Sargassum et Ascophyllum semblent avoir la plus grande capacité de rétention des métaux, à cause de leur grande concentration en polysaccharides. L’intégrité physique des algues est également importante, ceci afin de prévenir leur désintégration pendant les processus d’adsorption. Afin d’améliorer la stabilité et les propriétés mécaniques des algues fraîches, diverses méthodes ont été suggérées : i) greffage dans des polymères synthétiques; ii) incorporation dans des matériaux inorganiques; iii) liaison sur un support adéquat; et iv) séquestration par un agent de liaison.
L’acide alginique est un polymère naturel se trouvant dans les algues brunes. Ce polymère est extrait en traitant les algues avec une solution de carbonate de sodium, puis l’acide alginique est précipité, ou converti en sel d’alginate de calcium. Lorsque l’acide alginique réagit avec des ions polyvalents, tel que le calcium, une séquestration se produit procurant un gel d’alginate ayant des forces structurales significatives. L’alginate de calcium peut être préparé sous plusieurs formes, telles que des billes, de la poudre, des membranes, des fibres ou des supports d’immobilisation cellulaire. Les billes sont particulièrement intéressantes du point de vue de leur application et de leur réutilisation.
L’utilisation des algues marines en tant que procédé d’enlèvement des métaux doit tenir compte de plusieurs considérations techniques. Les systèmes de biosorption utilisent les biomasses sous forme solide en un procédé conventionnel de contact solide-liquide et, dans certains cas, les systèmes comprennent plusieurs étapes de biosorption et de désorption. L’effluent à traiter peut entrer en contact avec la biomasse selon un procédé en mode discontinu, semi-continu ou continu. Une fois saturés en métaux lourds, les adsorbants peuvent être disposés de façon sécuritaire, ou être réutilisés après élution des métaux. Dans ce cas, la plupart des métaux lourds (Cd, Co, Cu, Mn, Pb, Zn) peuvent être élués à l’aide d’acides dilués (chlorhydrique, sulfurique, nitrique) ou de solutions salines concentrées. Certains métaux qui sont moins dépendants du pH d’adsorption (Au, Ag, Hg) ne peuvent être élués en utilisant un acide dilué. Des solutions de thiourée ou de mercaptol peuvent être utilisées pour l’or et l’acétate de sodium pour la récupération de l’argent. La combustion des algues est également possible, néanmoins, elle n’est envisageable que si l’adsorbant est peu dispendieux et grandement disponible.
Plusieurs types de biomasses organiques ou inorganiques peuvent être utilisés comme matériaux adsorbants. Des études ont démontré l’efficacité des microorganismes vivants ou morts incluant les bactéries, les levures, les moisissures, les microalgues, les cyanobactéries et les biomasses issues du traitement des eaux usées (boues d’épuration). Les rejets de l’industrie forestière, incluant les sciures et les écorces de bois riches en lignine et en tannins, ont été également étudiés de façon intensive. Certaines plantes aquatiques (Ceratophyllum demersum, Lemna minor, Myriophyllum spicatum) ont également été évaluées pour leur capacité en phytofiltration et phytoassainissement. D’autres études ont été effectuées sur la performance de fixation des métaux de la chitine, cette dernière étant un biopolymère naturel très abondant, lequel est classé second après la cellulose en terme d’abondance. Ce biopolymère se retrouve largement dans l’exosquelette des crustacés et des coquillages. Le chitosan est produit en effectuant la dé-acétylation de la chitine en milieu alcalin. La mousse de tourbe, les déchets d’agriculture (résidus de thé et de café, pelures de certains légumes, écailles de noix, d’arachides, de cacao) et divers autres adsorbants de nature inorganique (sable, argile, oxyde, zéolites) ont également été étudiés pour la récupération des métaux en solution.
D’un point de vue économique, plusieurs méthodes existent pour traiter les eaux usées. La sélection d’une méthode dépend de plusieurs critères, tels que la compatibilité avec les opérations existantes, les coûts d’exploitation, la flexibilité des procédés afin de pouvoir traiter des variations de charges hydrauliques et de concentrations de contaminants. La méthode doit être aussi fiable, robuste et simple d’utilisation. Dans certains cas, des économies substantielles peuvent être réalisées en faisant appel à l’adsorption des métaux sur des biomasses, comparativement aux procédés conventionnels, tel que la précipitation des métaux.
Mots clés:
- métal,
- enlèvement,
- adsorption,
- alginate,
- algue,
- eau usée,
- sorbant naturel,
- effluent,
- traitement
Parties annexes
References
- ABIA A.A., O.B. DIDI, E.D. ASUQUO (2006). Modeling of Cd2+ sorption kinetics from aqueous solutions onto some thiolated agricultural waste adsorbents. J. Appl. Sci., 6, 2549-2556.
- ABOLLINO O., M. ACETO, M. MALANDRINO, C. ARZANINI, E. MENTASTI (2003). Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res., 37, 1619-1627.
- ADERHOLD D., C.J. WILLIAMS, R.G.J. EDYVEAN (1996). The removal of heavy-metal ions by seaweeds and their derivatives. Bioresource Technol., 58, 1-6.
- AJMAL M., R.A.K. RAO, R. AHMAD, J. AHMAD (2000). Adsorption studies on Citrus reticulata (Fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater., 79, 117-131.
- AJMAL M., R.A.K. RAO, S. ANWAR, J. AHMAD, R. AHMAD (2003). Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresource Technol., 86, 147-149.
- AJMAL M., R.A.K. RAO, B.A. SIDDIQUI (1996). Studies on the removal and recovery of Cr(VI) from electroplating wastes. Water Res., 30, 1478-1482.
- AKSU Z. and U. ACIKEL (1999). A single-staged bioseparation process for simultaneous removal of copper(II) and chromium(VI) by using C-vulgaris. Process Biochem., 34, 589-599.
- AKSU Z. and G. DONMEZ (2001). Comparison of copper(II) biosorptive properties of live and treated Candida sp. J. Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ. Eng., 36, 367-381.
- AKSU Z., G. EGRETLI, T. KUTSAL (1998). A comparative study of copper(II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Process Biochem., 33, 393-400.
- AKSU Z., Y. SAG, T. KUTSAL (1992). The biosorption of copper(II) by C. vulgaris and Z. ramigera. Environ. Technol., 13, 579-586.
- AL-ASHEH S., F. BANAT, D. ALROUSAN (2002). Adsorption of copper, zinc and nickel ions from single and binary metal ion mixtures on to chicken feathers. Adsorption Sci. Technol., 20, 849-864.
- AL-ASHEH S. and Z. DUVNJAK (1996). Biosorption of chromium by canola meal. Water Qual. Res. J. Can., 31, 319-328.
- ALLOWAY B.J. and D.C. AYERS (1993). Chemical principles of environmental pollution. Blackie Academic & Professional, London, United Kingdom.
- AL-RUB F.A.A., M.H. EL-NAAS, F. BENYAHIA, I ASHOUR (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem., 39, 1767‑1773.
- AL-RUB F.A.A., M. KANDAH, N. ALDABAYBEH (2003). Competitive adsorption of nickel and cadmium on sheep manure wastes: Experimental and prediction studies. Sep. Sci. Technol., 38, 483-497.
- ALVAREZ-AYUSO E., A. GARCIA-SANCHEZ, X. QUEROL (2003). Purification of metal electroplating waste waters using zeolites. Water Res., 37, 4855-4862.
- ALVES M.M., C.G. GOZÁLEZ BEÇA, R. GUEDES DE CARVALHO, J.M. CASTANHEIRA, M.C. SOL PEREIRA, L.A.T. VASCONCELOS (1993). Chromium removal in tannery wastewaters “polishing” by Pinus sylverstris bark. Water Res., 27, 1333-1338.
- ANDRES Y., H.J. MACCORDICK, J.C. HUBERT (1993). Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl. Microbiol. Biotechnol., 39, 413-417.
- ANNADURAI G., R.S. JUANG, D.J. LEE (2003). Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol., 47, 185-190.
- ARAÚJO M.M. and J.A. TEIXEIRA (1997). Trivalent chromium sorption on alginate beads. Int. Biodeterior Biodegradation, 40, 63-74.
- ARAVINDHAN R., B. MADHAN, J.R. RAO, B.U. NAIR (2004). Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J. Chem. Technol. Biotechnol., 79, 1251-1258.
- ARICA M.Y., G. BAYRAMOGLU, M. YILMAZ, S. BEKTAS, O. GENC (2004). Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater., 109, 191-199.
- ARTOLA A. and M. RIGOLA (1992). Selection of optimum biological sludge for zinc removal from wastewater by a biosorption process. Biotechnol. Lett., 14, 1199-1204.
- ATKINSON B.W., F. BUX, H.C. KASAN (1998). Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA, 24, 129-135.
- AWAN M.A., I.A. QAZI, I. KHALID (2003). Removal of heavy metals through adsorption using sand. J. Environ. Sci. China, 15, 413-416.
- AXTELL N.R., S.P.K. STERNBERG, K. CLAUSSEN (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technol., 89, 41-48.
- BABA Y. AND H. HIRAKAWA (1992). Selective adsorption of palladium(II), platinum(IV), and mercury(II) on a new chitosan derivative possessing pyridyl. Chem. Lett., 10, 1905-1908.
- BABEL S. and T.A. KURNIAWAN (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater., 97, 219-243.
- BAILEY R.P., T. BENNETT, M.M. BENJAMIN (1992). Sorption onto and recovery of Cr(VI) using iron-oxide-coated sand. Water Sci. Technol., 26(5-6), 1239-1244.
- BAILEY S.E., T.J. OLIN, R.M. BRICKA, D. ARIAN (1999). A review of potentially low-cost sorbents for heavy metals. Water Res., 33, 2469-2479.
- BAJPAI, J., S R. HRIVASTAVA, A. K. BAJPAI (2004). Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids and Surfaces A: Physicochem. Eng. Aspects. 236. 81-90.
- BANAT F., S. ALASHEH, F. MOHAI (2002). Multi-metal sorption by spent animal bones. Sep. Sci. Technol., 37, 311‑327.
- BANKS C.J. (1997). Scavenging trace concentrations of metals. In: Biosorbents for metal ions. WASE J., FORSTER C. [Editors.], Taylor & Francis Ltd, London, United Kingdom, pp. 115-140.
- BAYRAMOGLU G., S. BEKTAS, M.Y. ARICA (2003). Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J. Hazard. Mater., 101, 285‑300.
- BEVERIDGE T.J., C.W. FORESBERG, R.J. DOYLE (1982). Major sites of metal binding in Bacillus licheniformis walls. J. Bacteriol., 150, 1438-1448.
- BLAIS J.F., S. DUFRESNE, G. MERCIER (1999). État du développement technologique en matière d’enlèvement des métaux des effluents industriels. Rev. Sci. Eau, 12, 687‑711.
- BLAIS J.F., MERCIER G., DURAND A. (2002b). Récupération du plomb et du zinc par adsorption sur tourbe lors de la décontamination de cendres volantes d’incinérateur de déchets municipaux. Environ. Technol., 23, 515-524.
- BLAIS J.F., S E. ALVANO, F. HAMMY, G. MERCIER (2002a). Comparaison de divers adsorbants naturels pour la récupération du plomb lors de la décontamination de chaux usées d’incinérateur de déchets municipaux. J. Environ. Eng. Sci., 1, 265-273.
- BLAIS J.F., S S. HEN, N. MEUNIER, R.D. TYAGI (2003). Comparison of different natural adsorbents for metal removal from acidic effluent. Environ. Technol. 24, 205‑215.
- BLOOM P.R., M.B. McBRIDE (1979). Metal ion binding and exchange with hydrogen ions in acid-washed peat. Soil Sci. Soc. Am. J., 43, 687-692.
- BORBA C.E., R. GUIRARDELLO, E.A. SILVA, M.T. VEIT, C.R.G. TAVARES (2006). Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 30, 184-191.
- BOSINCO S., J. ROUSSY, E. GUIBAL, P. LECLOIREC, (1996). Interaction mechanisms between hexavalent chromium and corncob. Environ. Technol., 17, 55-62.
- BRIERLEY C.L. (1990). Bioremediation of metal-contamined surfaces and groundwaters. Geomicrobiol. J., 8, 201-223.
- BRIERLEY I.A., G.M. GOYAK, C.L. BRIERLEY (1986). Considerations for commercial use of natural products for metals recovery. In: Immobilisation of ions by biosorption, H. Eccles & S.Hunt. Ellis Horwood (Editors), Chichester, pp.105-120.
- BROOKS C.S. (1991). Metal recovery from industrial wastes. Lewis Publishers (Editors), Boca Raton, Florida, UNITED STATES.
- BROWN P.A., S.A. GILL, S.J. ALLEN (2000). Metal removal from wastewater using peat. Water Res., 34, 3907-3916.
- CABRAL J.P.S. (1992). Selective binding of metal ions to Pseudomonas syringae cells. Microbios., 71, 47-53.
- CECEN F. and G. GURSOY (2001). Biosorption of heavy metals from landfill leachate onto activated sludge. J. Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ. Eng., 36, 987-998.
- CELIS R., M.C. HERMOSIN, J. CORNEJO (2000). Heavy metal adsorption by functionalized clays. Environ. Sci. Technol., 34, 4593-4599.
- CEPRIÁ G., L. IRIGOYEN, J.R. CASTILLO (2006). A microscale procedure to test the metal sorption properties of biomass sorbents: A time and reagents saving alternative to conventional methods. Microchim. Acta., 154, 287‑295.
- CHAISUKSANT Y. (2003). Biosorption of cadmium(II) and copper(II) by pretreated biomass of marine alga Gracilaria fisheri. Environ. Technol., 24, 1501-1508.
- CHAMARTHY S., C.W. SEO, W.E. MARSHALL (2001). Adsorption of selected toxic metals by modified peanut shells. J. Chem. Technol. Biotechnol., 76, 593-597.
- CHANG A.C., D.E. CROWLEY, A.L. PAGE (2003). Assessing bioavailability of metals in biosolids-treated soils. Water Environment Research Foundation, 97-REM-5, IWA Publishing, London, United Kingdom.
- CHEN D., Z. LEWANDOWSKI, F. ROE, P. SURAPANENI (1993). Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol. Bioeng., 41, 755-760.
- CHMIELEWSKI A.P., T.S. URBANSKI, W. MIGDAL (1997). Separation technologies for metals recovery from industrial wastes. Hydrometallurgy, 45, 333-344.
- COSSICH E.S., E.A. DA SILVA, C.R.G. TAVARES, L.C. FILHO, T.M.K. RAVAGNANI (2004). Biosorption of chromium (III) by biomass of seaweed Sargussum sp. in a fixed-bed column. Adsorption, 10, 129-138.
- COSTA A.C.A. and S.G.F. LEITE (1990). Cadmium and zinc biosorption by Chlorella homosphaera. Biotechnol Lett., 12, 941-944.
- COTORAS D., P. VIEDMA, L. CIFUENTES, A. MESTRE (1992). Sorption of metal ions by whole cells of Bacillus and Micrococcus. Environ. Technol., 13, 551-559.
- COUILLARD D. (1994). The use of peat in wastewater treatment. Water Res., 28, 1261-1274.
- COUPAL B. and J.M. LALANCETTE (1976). The treatment with waste waters with peat moss. Water Res., 10, 1071‑1076.
- CRIST R.H., J.R. MARTIN, D. CARR, J.R. WATSON, H.J. CLARKE (1994). Interaction of metals and protons with algae. 4. Ion exchange vs adsorption models and reassessment of scatchard plots; ion-exchange rates and equilibria compared with calcium alginate. Environ. Sci. Technol., 28, 1859-1866.
- CRIST R.H., J.R. MARTIN, D.L.R. CRIST (2004). Ion-exchange aspects of toxic metal uptake by Indian mustard. Int. J. Phytoremediation, 6, 85-94.
- CUI H., L.Y. LI, J. R. GRACE (2006). Exploration of remediation of acid rock drainage with clinoptilolite as sorbent in a slurry bubble column for both heavy metal capture and regeneration. Water Res., 40, 3359-3366.
- DA COSTA A.C.A. and F.P. DE FRANÇA (1996). Cadmium uptake by biosorbent seaweeds: adsorption isotherms and some process conditions. Sep. Sci. Technol., 31, 2373‑2393.
- DA COSTA A.C.A., L.M.S. DE MESQUITA, J. TORNOVSKY (1996). Batch and continuous heavy metal biosorption by a brown seaweed from a zinc-producing plant. Miner. Eng., 9, 811-824.
- DARNALL D.W., B. GREENE, M. HOSEA, R.A. McPHERSON, M. HENZL, M.D. ALEXANDER (1986). Recovery of metals from algae. In: Trace Metal Removal from Aqueous Solutions. THOMPSON R. (Editors), Litho Ltd, Whitstable, Kentucky, UNITED STATES, pp. 1-24.
- D’SOUZA S.F., P. SAR, S.K. KAZY, B. KUBAL (2006). Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 41, 487-500.
- DUTRIZAC J.E. and P.A. RIVEROS (1999). Hematite precipitation from ferric chloride media at atmospheric pressure: A new approach to iron control and recycling. Proceedings of REWAS’99, A global symposium on recycling, waste treatment and clean technology, San Sebastian Spain, September 5-9. Gaballah I., Hager J. and Solozabal R. (Editors), TMS-Inasmet, 1, p. 663-673.
- ECCLES H. (1995). Removal of heavy metals from effluent streams - why select a biological process? Int. Biodeterioration Biodegradation, 5, 5-16.
- EDYVEAN R.G.J., C.J. WILLIAMS, M.W. WILSON, D. ADERHOLD (1997). Biosorption using unusual biomasses. In: Biosorbents for metal ions. WASE J., FORSTER C. (Editors), Taylor & Francis Ltd, London, United Kingdom, Chap. 8, pp. 165-812.
- ERGENE A., S. TAN, H. KATIRCIOGLU, Z. OKTEM (2006) Biosorption of copper(II) on immobilised Synechocystis aquatilis. Fresenius Environ. Bull. 15, 283-288.
- ESCUDERO C., N. FIOL, I. VILLAESCUSA (2006). Chromium sorption on grape stalks encapsulated in calcium alginate beads. Environ. Chem. Lett. 4, 239-242.
- FAO (2002). Food and agriculture organization of the United Nations. Yearbooks of fishery statistics production.
- FERNANDEZ-PINAS F., P. MATEO, I. BONILLA (1991). Binding of cadmium by cyanobacterial growth media : free ion concentration as a toxicity index to the cyano-bacteria Nostoc UAM 208. Arch. Environ. Contam. Toxicol., 21, 435-431.
- FIGUEIRA M.M., B. VOLESKY, K. AZARIAN, V.S.T. CIMINELLI (2000). Biosorption column performance with a metal mixture. Environ. Sci. Technol., 34, 4320-4326.
- FIOL N., C. ESCUDERO, J. POCH, I. VILLAESCUSA (2006). Preliminary studies on Cr(VI) removal from aqueous solution using grape stalk wastes encapsulated in calcium alginate beads in a packed bed up-flow column. React. Funct. Polym. 66, 795-807.
- FISET J.F., J.F. BLAIS, R. BEN CHEIKH, R.D. TYAGI (2000). Revue sur l’enlèvement des métaux des effluents par adsorption sur les sciures et les écorces de bois. Rev. Sci. Eau, 13, 323-347.
- FISET J.F., R.D. TYAGI, J.F. BLAIS (2002). Cocoa shells as adsorbent for metal recovery from acid effluent. Water Pollut. Res. J. Can., 37, 379-388.
- FISHER N.S. (1985). Bioaccumulation of metals by marine picoplankton. Marine Biol., 87, 137-142.
- FISHER N.S., M. BOHE, J.L. TEYSSIE (1984). Accumulation and toxicity of Cd, Zn, Ag and Hg in four marine phytoplankters. Marine Ecol. Prog. Series, 18, 201-213.
- FLYNN C.M. JR., T.G. CARNAHAN, R.E. LINDSTROM (1980). Adsorption of heavy metal ions by xanthated sawdust. Report of Investigations # 8427. United States Bureau of Mines.
- FOUREST E. and J.C. ROUX (1992). Heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH. Appl. Microbiol. Biotechnol., 37, 399-403.
- FOUREST E., and B. VOLESKY (1997). Alginate properties and heavy metal biosorption by marine algae. Appl. Biochem. Biotechnol., 67, 215-226.
- FRISS N. and P. MYERS-KEITH (1986). Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng., 28, 21-28.
- GADD G.M. and L. DE ROME (1988). Biosorption of copper by fungal melanine. J. Appl. Microbiol. Biotechnol., 29, 610-617.
- GARDEA-TORRESDEY J.L., G. DELAROSA, J.R. PERALTA-VIDEA (2004). Use of phytofiltration technologies in the removal of heavy metals: A review. Pure Appl. Chem., 76, 801-813.
- GARNHAM G.W. (1997). The use of algae as metal biosorbents. In: Biosorbents for metal ions. WASE J., FORSTER C. (Editors), Taylor & Francis Ltd, London, United Kingdom, pp. 11-37.
- GARNHAM G.W., G.A. CODD, G.M. GADD (1992a). Uptake of technetium by freshwater green microalgae. J. Appl. Microbiol. Biotechnol., 37, 679-684.
- GARNHAM G.W., G.A. CODD, G.M. GADD (1992b). Accumulation of cobalt, zinc and manganese by the estuarine green microalgal Chlorella salina immobilised in alginate microbeads. Environ. Sci. Technol., 26, 1764‑1769.
- GARNHAM G.W., G.A. CODD, G.M. GADD (1993a). Accumulation of zirconium by microalgae and cyanobacteria. J. Appl. Microbiol. Biotechnol., 39, 666‑672.
- GARNHAM G.W., G.A. CODD, G.M. GADD (1993b). Accumulation of technetium by cyanobacteria. J. Appl. Phycol., 5, 307-315.
- GENÇ-FUHRMAN H., P.S. MIKKELSEN, A. LEDIN (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni, and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Res. 41, 591-602.
- GHARAIBEH S.H., W.Y. ABU-EL-SHA’R, M.M. AL-KOFAHI (1998). Removal of selected heavy metals from aqueous solutions using processes solid residue of olive mill products. Water Res., 32, 498-502.
- GOLDBERG S. and C.M. GRIEVE (2003). Boron adsorption by maize cell walls. Plant Soil, 251, 137-142.
- GONG R.M., Y. DING, H.J. LIU, Q.Y.,CHEN, Z.L. LIU (2005). Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere, 58, 125-130.
- GOTOH T., K. MATSUSHIMA, K.I. KIKUCHI (2004). Adsorption of Cu and Mn on covalently cross-linked alginate gel beads. Chemosphere, 55, 57-64.
- GREEN-RUIZ C. (2006). Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour. Technol., 97, 1907-1911.
- GREENE B. and D.W. DARNALL (1990). Microbial oxygenic photoautotrophes (cyanobacteria and algae) for metal-ion binding. In: Microbial Mineral Recovery. EHRLICH H.L., BRIERLEY C.L. (Editors), McGraw-Hill, New-York, New-York, UNITED STATES, pp. 227-302.
- GUIBAL E., C. MILOT, J. ROUSSY (1999). Molybdate sorption by cross-linked chitosan beads: Dynamic studies. Water Environ. Res., 71, 10-17.
- GUIBAL E., M. RUIZ, T. VINCENT, A. SASTRE, R. NAVARROMENDOZA (2001). Platinum and palladium sorption on chitosan derivatives. Sep. Sci. Technol., 36, 1017-1040.
- GUIBAL E., I. SAUCEDO, M. JANSSON-CHARRIER, B. DELANGHE, P. LE CLOIREC (1994). Uranium and vanadium sorption by chitosan and derivatives. Water Sci. Technol., 30, 183-190.
- GUPTA V.K., A.K. SHRIVASTAVA, N. JAIN (2001). Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Res., 35, 4079‑4085.
- HAMMAINI A., F. GONZALEZ, A. BALLESTER, M.L. BLAZQUEZ, J.A. MUNOZ (2003). Simultaneous uptake of metals by activated sludge. Min. Eng., 16, 723-729.
- HARRIS P.O. and G.J. RAMELOW (1990). Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ. Sci. Technol., 24, 220-234.
- HASSETT J.M., J.V. JENNET, J.E. SMITH (1981). Microplate technique for determining accumulation of metals by algae. Appl. Environ. Microbiol., 41, 1097-1106.
- HELAL A.A., G.A. ALIAN, H.A. MADBOULY (2002). Sorption of tin on human teeth. Health Phys., 82, 105‑108.
- HIRAI A., H. ODANI (1994). Sorption and transport of water vapor in alginic acid, sodium alginate, and alginate-cobalt complex films. J. Polymer Sci. Part B: Polymer Phys., 32, 2329‑2337.
- HO Y.S. and McKAY (2000). Batch sorber design using equilibrium and contact time data for the removal of lead. Water Air Soil Pollut., 124, 141-153.
- HO Y.S. and A.E. OFOMAJA (2006). Kinetic studies of copper ion adsorption on palm kernel fibre. J. Hazard. Mater. 137, 1796-1802.
- HOLAN Z.R. and B. VOLESKY (1994). Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng., 43, 1001-1009.
- HOLAN Z.R., B. VOLESKY, I. PRASETYO (1993). Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng., 41, 819-825.
- HORIKOSHI T., A. NAKAJIMA, T. SAKAGUSHI (1979). Studies on the accumulation of heavy metal elements in biological systems IV. Uptake of uranium by Chlorella regularis. Agric. Biol. Chem., 43, 617-623.
- HSIEN T.Y. and G.L. RORRER (1995). Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads. Sep. Sci. Technol., 30, 2455-2475.
- HUANG C., Y.C. CHUNG, M.R. LIOU (1996). Adsorption of Cu(II) and Ni(II) by pelletized biopolymer. J. Hazard. Mater., 45, 265-277.
- IBÁÑEZ J.P. and Y. UMETSU (2002). Potential of protanated alginate beads for heavy metals uptake. Hydrometallurgy, 64, 89-99.
- IBÁÑEZ J.P. and Y. UMETSU (2004). Uptake of trivalent chromium from aqueous solutions using protonated dry alginate beads. Hydrometallurgy, 72, 327-334.
- IQBAL M. and A. SAEED (2002). Removal of heavy metals from contaminated water by petiolar felt-sheath of palm. Environ. Technol., 23, 1091-1098.
- JANG L.K., D. NGUYEN, G.G. GEESEY (1999). Selectivity of alginate gel for Cu over Zn when acidic conditions prevail. Water Res., 33, 2817-2825.
- JANG L.K., D. NGUYEN, G.G. GEESY (1995). Effect of pH on the absorption of Cu(II) by alginate gel. Water Res., 29, 315-321.
- JAWED M. and V. TARE (1991). Application of starch xanthates for cadmium removal: a comparative evaluation. J. Appl. Polymer Sci., 42, 317-324.
- JEFFERS T.H., P.G. BENNETT, R.R. CORWIN (1994). Biosorption of metal contaminants using immobilised biomass-field studies. U.S. Bureau of Mines, R1 9461.
- JEON C., J.Y. PARK, Y.J. YOO (2002). Characteristics of metal removal using carboxylated alginic acid. Water Res., 36, 1814-1824.
- JEON C., Y.J. YOO, W.H. HOELL (2005). Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid. Bioresource Technol., 96, 15-19.
- KAEWSARN P. (2002). Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere, 47, 1081-1085.
- KAEWSARN P., Q.M. YU, W.D. MA (2001). Interference of co-ions in biosorption of Cu2+ by biosorbent from marine alga Durvillaea potatorum. Environ. Eng. Sci., 18, 99‑104.
- KAEWSARN P. and Q.M. YU (2001). Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Environ. Pollut., 112, 209-213.
- KALLO D. (2001). Applications of natural zeolites in water and wastewater treatment. In: Natural Zeolites: Occurrence, Properties, Applications (Reviews in Mineralogy and Geochemistry, Vol. 45) BISH D.L., MING D.W., [Ed.], Mineralogical Society of America - The Geochemical Society, Washington, DC, U.S.A, pp. 519-550.
- KAPOOR A. and T. VIRARAGHAVAN (1997). Fungi as biosorbents. In: Biosorbents for metal ions. WASE J., FORSTER C. (Editors), Taylor & Francis Ltd, London, United Kingdom, pp. 67-85.
- KARAGUNDUZ A., Y. KAYA, B. KESKINLER, S. ONCEL (2006). Influence of surfactant entrapment to dried alginate beads on sorption and removal of Cu2+ ions. J. Hazard. Mater. 131, 79-83.
- KERTMAN S.V., G.M. KERTMAN, Z.S. CHIBRIKOVA (1993). Peat as a heavy-metal sorbent. J. Appl. Chem. U.S.S.R., 66, 465-466.
- KESKINKAN O., M.Z.L. GOKSU, M. BASIBUYUK, C.F. FORSTER (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technol., 92(2), 197-200.
- KHANI M. H., KESHTKAR A. R., MEYSAMI B., ZAREA M. F., JALALI R. (2006) Biosorption of uranium from aqueous solutions by non living biomass of marine algae Cystoseira indica. Electronic J. Biotechnol., 9, 100-106.
- KIM D.S. and B.Y. PARK (2001). Effects on the removal of Pb2+ from aqueous solution by crab shell. J. Chem. Technol. Biotechnol., 76, 1179-1184.
- KLIMMEK S., H.J. STAN, A. WILKE, G. BUNKE, R. BUCHHOLZ (2001). Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol., 35, 4283-4288.
- KRATOCHVIL D., P. PIMENTEL, B. VOLESKY (1998). Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. technol., 32, 2693-2698.
- KUJAN P., A. PRELL, H. ŠAFÁR, M. SOBOTKA, T. REZANKA, P. HOLLER (2006). Use of the industrial yeast Candida utilis for cadmium sorption. Folia Microbiol., 51, 257-260.
- KUMAR P. and S.S. DARA (1982). Utilization of agricultural wastes for decontaminating industrial/domestic wastewaters from toxic metals. Agr. Wastes, 4, 213-223.
- KUMAR Y.P., P. KING, V.S.R.K. PRASAD (2006). Removal of copper from aqueous solution using Ulva fasciata sp. - A marine green algae. J. Hazard. Mater. 137, 367-373.
- KUYUCAK N. and B. VOLESKY (1988). Biosorbents for the recovery of metals from industrial solutions. Biotechnol. Lett., 10, 137-142.
- LAU T.C., P.O. ANG, P.K. WONG (2003). Development of seaweed biomass as a biosorbent for metal ions. Water Sci. Technol., 47, 49-54.
- LEE H.S. and B. VOLESKY (1997). Interaction of light metals and protons with seaweed biosorbent. Water Res., 31, 3082-3088.
- LEE S.M. and A.P. DAVIS (2001). Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge. Water Res., 35, 534-540.
- LEPPERT D. (1990). Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water. Mining Eng., 42, 604-608.
- LEUSCH A., Z.R. HOLAN, B. VOLESKY (1995). Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Technol. Biotechnol., 62, 279-288.
- LIPPMANN M. (2000). Environmental toxicants. Human exposures and their health effects. Wiley Interscience, New York, New York, United States, 987 pages.
- LO W., H. CHUA, M.F. WONG, P. YU (2003). Bacterial biosorbent for removing and recovering copper from electroplating effluents. Water Sci. Technol., 47, 251-256.
- LODEIRO P., J.L. BARRIADA, R. HERRERO, M.E. SASTRE DE VICENTE (2006). The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ. Pollut. 142, 264‑273.
- LODEIRO P., B. CORDERO, Z. GRILLE, R. HERRERO, M.E. SASTRE DE VIVENTO (2004). Physicochemical studies of cadmium(II) biosorption by the invasive alga in Europe Sargassum muticum. Biotechnol. Bioeng, 88, 237‑247.
- LOPEZ A., N. LAZARO, S. MORALES, A.M. MARQUES (2002). Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: A comparative study. Water Air Soil Pollut., 135, 157-172.
- LOUKIDOU M.X., K.A. MATIS, A.I. ZOUBOULIS, M. LIAKOPOULOU-KYRIAKIDOU (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res., 37(18), 4544-4552.
- LOW K.S., C.K. LEE, A.C. LEO (1995). Removal of metals from electroplating wastes using banana pith. Bioresource Technol., 51, 227-231.
- LU Y., E. WILKINS (1996). Heavy metal removal by caustic-treated yeast immobilized in alginate. J. Hazard. Mater., 49, 165-179.
- LUO F., Y. LIU, X. LI, Z. XUAN, J. MA (2006). Biosorption of lead ion by chemcially-modified biomass of marine algae Laminaria japonica. Chemsophere, 64, 1122-1127.
- MANN H., W.S. FYFE, R. KERRICH (1988). The chemical content of algae and waters: bioconcentration. Toxicity Assessment, 3, 1-16.
- MARSHALL W.E. and E.T. CHAMPAGNE (1995). Agricultural byproducts as adsorbents for metal ions in laboratory prepared solutions and in manufacturing wastewaters. J. Environ. Sci. Health, A30, 241-261.
- MASRI M.S. and M. FRIEDMAN (1974). Effect of chemical modification of wool on metal ion binding. J. Appl. Polymer Sci., 18, 2367-2377.
- MASRI M.S., F.W. REUTER, M. FRIEDMAN (1974). Binding of metal cations by natural substances. J. Appl. Polymer Sci., 18, 675-681.
- MATHEICKAL J.T., J. FELTHAM, Q. YU (1997). Cu(II) binding by marine alga Ecklonia radiata biomaterial. Environ. Technol., 18, 25-34.
- MATHEICKAL J.T. and Q. YU (1997). Biosorption of lead(II) from aqueous solutions by Phellinus badius. Miner. Eng., 10, 947-957.
- MATTUSCHKA B. and G. STRAUBE (1993). Biosorption of metals by a waste biomass. J. Chem. Technol., 58, 57‑63.
- McGREGOR R.G., D.W. BLOWES, J.L. JAMBOR, W.D. ROBERTSON (1998). Mobilization and attenuation of heavy metals within a nickel mine tailings impoundment near Sudbury, Ontario, Canada. Environ. Geol., 36, 305‑319.
- McKAY G., H.S. BLAIR, A. FINDON (1989). Equilibrium studies for the sorption of metal ions onto chitosan. Ind. J. Chem. A, 28, 356-360.
- MCKAY G., Y.S. HO, J.C.Y. NG (1999). Biosorption of copper from waste waters. A review. Sep. Purif. Methods, 28, 87-125.
- MEHTA S.K. and J.P. GAUR (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol., 25, 113-152.
- MEHTA S.K., S A. INGH, J.P. GAUR (2002). Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: Influence of pH, temperature, culture age, and cations. J. Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ. Eng., 37, 399-414.
- MEUNIER N., J.F. BLAIS, R.D. TYAGI (2004). Removal of heavy metals from acid soil leachate using cocoa shells in a counter-current sorption process. Hydrometallurgy, 73, 225-235.
- MEUNIER N., J. LAROULANDIE, J.F. BLAIS, R.D. TYAGI (2003a). Cocoa shells for heavy metal removal from acidic solutions. Bioresource Technol., 90, 255-263.
- MEUNIER N., J. LAROULANDIE, J.F. BLAIS, R.D. TYAGI (2003b). Lead removal from acidic solutions by sorption on cocoa shells: effect of some parameters. J. Environ. Eng. Div. ASCE, 129, 693-698.
- MIN J.H. and J.G. HERING 1998. Arsenate sorption by Fe(III)-doped alginate gels. Water Res., 32, 1544-1552.
- MINAMISAWA M., S. NAKAJIMA, Y. MITSUE, K. MIYAZAWA, K. UENO, A. HATORI, S. MIYAJIMA, M. HOSHINO, S. YOSHIDA, N. TAKAI (2002). Removal of copper(II) and cadmium(II) in water by use of roasted coffee beans. Nippon Kagaku Kaishi, 3, 459-461.
- MISRA V. and S.D. PANDEY (2001). Removal of arsenic from aqueous solutions by adsorption method using calcium alginate beads containing humic acid. J. Ecophysiol. Occup. Health, 1, 295-302.
- MOHAN D., K.P. SINGH, V.K. SINGH (2006). Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon. J. Hazard. Mater. 135, 280-295.
- MONTANHER S.F., E.A. OLIVEIRA, M.C. ROLLEMBERG (2005). Removal of metal ions from aqueous solutions by sorption onto rice bran. J. Hazard. Mater., 117, 207-211.
- MURALEEDHARAN T.R. and C. VENKOBACHAR (1990). Mechanism of biosorption of copper(II) by Ganoderma lucidum. Biotechnol. Bioeng., 35, 320-325.
- MURATHAN A.S. and M. BÜTÜN (2006). Removal of lead ions from dilute aqueous solution in packed columns by using natural fruit shell through adsorption. Fresenius Environ. Bull., 15, 1491-1498.
- NAJA G. and B. VOLESKY (2006). Multi-metal biosorption in a fixed-bed flow-through column. Colloids and Surf., A, 281, 194-201.
- NAKAJIMA A. (2003). Accumulation of gold by micro-organisms. World J. Microbiol. Biotechnol., 19, 369-374.
- NAKAJIMA A., T. HORIKOSHI, T. SAKAGUCHI (1982). Recovery of uranium by immobilized microorganisms. Eur. J. Microbiol. Biotechnol., 16, 88-91.
- NASERNEJAD B., T.E. ZADEH, B.B. POUR, M.E. BYGI, A. ZAMANI (2005). Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochem., 40, 1319‑1322.
- NASSAR M.M., K.T. EWIDA, E.E. EBRAHIEM, Y.H. MAGDY, M.H. MHEAEDI (2004). Adsorption of iron and manganese using low cost materials as adsorbents. J. Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ. Eng., 39, 421-434.
- NESTLE N. and R. KIMMICH (1996). NMR Microscopy of heavy metal absorption in calcium alginate beads. Appl. Biochem. Biotechnol., 56, 9-17.
- NGOMSIK A.F., A. BEE, J.M. SIAUGUE, V. CABUIL, G. COTE (2006). Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res. 40, 1848-1856.
- NORBERG A.B. and H. PERSSON (1984). Accumulation of heavy metal ions by Zooglea ramigera. Biotechnol. Bioeng., 26, 239-246.
- OFER R., A. YERACHMIEL, Y. SHMUEL (2003). Marine macroalgae as bisorbents for cadmium and nickel in water. Water Environ. Res., 75, 246-253.
- OFOMAJA A.E. and Y.S. LO (2007). Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. 139, 356-362.
- OLIVEIRA L.C.A., D.I. PETKOWICZ, A. SMANIOTTO, S.B.C. PERGHER (2004). Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res., 38, 3699-3704.
- ORHAN Y. and H. BÜYÜKGÜNGÖR (1993). The removal of heavy metals by using agricultural wastes. Water Sci. Technol., 28, 247-255.
- OZDEMIR G., N. CEYHAN, E. MANAV (2005). Utilization un alginate beads for Cu(II) and Ni(II) adsorption of an exopolysaccharide produced by Chryseomonas luteola Tem05. World J. Microbiol. Biotechnol. 21, 163-167.
- OZDEMIR M., O. SAHIN, E. GULER (2004). Removal of Pb(II) ions from water by sunflower seed peel. Fresenius Environ. Bull., 13, 524-531.
- PAPAGEORGIOU S.K., F.K. KATSAROS, E.P. KOUVELOS, J.W. NOLAN, H. LE DEIT, N.K. KANELLOPOULOS (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. 137, 1765‑1772.
- PARK D., Y.S. YUN, H.Y. CHO, J.M. PARK (2004). Chromium biosorption by thermally treated biomass of the brown seaweed, Ecklonia sp. Ind. Eng. Chem. Res., 43, 8226-8232.
- PARK H.G. and M.Y. CHAE (2004). Novel type of alginate gel-based adsorbents for heavy metal removal. J. Chem. Technol. Biotechnol., 79, 1080-1083.
- PARKASH A.S. and R.A.S. BROWN (1976). Use of peat and coal for recovering zirconium from solution. Can. Min. Metallurgical Bull., 69, 59-64.
- PATTERSON J.W. (1989). Industrial wastes reduction. Environ. Sci. Technol., 23, 1032-1038.
- PAVASANT P., R. APIRATIKUL, V. SUNGKHUM, P. SUTHIPARINYANONT, S. WATTANACHIRA, T. F. MARHABA (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 97, 2321-2329.
- PEREIRA M.G. and M.A.Z. ARRUDA (2003). Vermicompost as a natural adsorbent material: Characterization and potentialities for cadmium adsorption. J. Braz. Chem. Soc., 14, 39-47.
- PRADAS E.G., M.V. SÁNCHEZ, F.C. CRUZ, M.S. VICIANA, M.F. PÉREZ (1994). Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Technol. Biotechnol., 59, 289-295.
- PRASHER S.O., M. BEAUGEARD, J. HAWARI, P. BERA, R.M. PATEL, S.H. KIM (2004). Biosorption of heavy metals by red algae (Palmaria palmata). Environ. Technol., 25, 1097-1106.
- RANDALL J.M., R.L. BERMANN, V. GARRETT, A.C. JR. WAISS (1974). Use of bark to remove heavy metal ions from waste solutions. Forest Prod. J., 24, 80-84.
- RENN, D. (1997). Biotechnology and the red seaweed polysaccharide industry: Status, needs and prospects. Trends Biotechnol., 15, 9-14.
- RIVEROS P.A. (2004). Iron removal from effluents to reduce sludge formation and CO2 emissions. European Commission-CANMET Joint Workshop on Clean Production Technologies, ADJEMIAN A., DUTRIZAC J., NÉGRÉ P., YURRAMENDI L. (Editors), Madrid, Spain, Sep 29 ‑Oct 2, 2004., Inasmet, San Sebastian, Spain, pp. 253-266.
- RIVEROS P.A., J.D. KAWAJA, D. GOULD, D. KOREN (2001). The extraction of Fe(III) from acid mine drainage using a biosorbent derived from seaweed. CANMET Report MMSL-INT 2001-005 (TR), Ottawa, Ontario, Canada.
- RUIZ M., A. SASTRE, E. GUIBAL (2003). Osmium and iridium sorption on chitosan derivatives. Solvent Extr. Ion Exc., 21, 307-329.
- SAKAGUCHI T., T. HORIKOSHI, A. NAKAJIMA (1978). Uptake of uranium from sea water by microalgae. J. Ferment. Technol., 56, 561-565.
- SAKAGUCHI T., A. NAKAJIMA, T. HORIKOSHI (1981). Studies on the accumulation of heavy metal elements in biological systems XVII. Accumulation of molybdenum by green microalgae. Eur. J. Appl. Microbiol. Biotechnol., 12, 84-89.
- SAY R., N. YIMAZ, A. DENIZLI (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Ads. Sci. Technol., 21, 643-650.
- SCHIEWER S. and VOLESKY (1995). Modeling of the proton-metal ion exchange. Environ. Sci. technol., 29, 2921-2927.
- SCHIEWER S. and M.H. WONG (1999). Metal binding stoichiometry and isotherm choice in biosorption. Environ. Sci. Technol., 33, 3821-3828.
- SCHNEIDER I.A.H., J. RUBIO, R.W. SMITH (2001). Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Int. J. Miner. Proc., 62, 111-120.
- SCOTT J.A. and S.J. PALMER (1990). Sites of cadmium uptake in bacteria used for biosorption. Appl. Microbiol. Biotechnol., 33, 221-225.
- SEKI H. and A. SUZUKI (1996). Adsorption of lead ions on composite biopolymer adsorbent. Ind. Eng. Res., 35, 1378‑1382.
- SEKI K., N. SAITO, M. AOYAMA (1997). Removal of heavy metal ions from solutions by coniferous barks. Wood Sci. Technol., 31, 441-447.
- SENTHILKUMAR R., K. VIJAYARAGHAVAN, M. THILAKAVATHI, P.V.R. IYER, M. VELAN (2006). Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions. J. Hazard. Mater., 136, 791-799.
- SHARMA D.C. and C.F. FORSTER (1993). Removal of hexavalent chromium using Sphagnum moss peat. Water Res., 27, 1201-1208.
- SHARMA D.C. and C.F. FORSTER (1994). The treatment of chromium wastewaters using the sorptive potential of leaf mould. Bioresource Technol., 49, 31-40.
- SHIMIZU T. and A. TAKADA (1997). Preparation of Bi-based superconducting fiber by metal biosorption of Na-Alginate. Polymer Gels Networks, 5, 267-283.
- SINGHAL R.K., S. JOSHI, K. TIRUMALESH, R.P. GURG (2004). Reduction of uranium concentration in well water by Chlorella (Chlorella pyrendoidosa) a fresh water algae immobilized in calcium alginate. J. Radioanal. Nuclear Chem., 261, 73-78.
- SMALL T.D., L.A. WARREN, E.E. RODEN, F.G. FERRIS (1999). Sorption of strontium by bacteria, Fe(III) oxide, and bacteria-Fe(III) oxide composites. Environ. Sci. Technol., 33, 4465-4470.
- SMITH E.F., P. MACCARTHY, T.C. YU, H.B. JR. MARK (1977). Sulfuric acid treatment of peat for cation exchange. J. Water Pollut. Control Fed., April, 633-638.
- SPINTI M., H. ZHUANG, E.M. TRUJILLO (1995). Evaluation of immobilized biomass beads removing heavy metals from wastewaters. Water Environ. Res., 67, 943‑952.
- SRIVASTAVA S.K., A.K. SINGH, A. SHARMA (1994). Studies on the uptake of lead and zinc by lignin obtained from black liquor – a paper industry waste material. Environ. Technol., 15, 353-361.
- STUMM W. and J.J. MORGAN (1996). Aquatic chemistry chemical equilibria and rates in natural waters. SCHNOOR J.L., ZEHNDER A. (Editors], John Wiley and Sons, New York, New York, UNITED STATES, pp. 519-526.
- TAN T.C., C.K. CHIA, C.K. TEO (1985). Uptake of metal ions by chemically treated human hair. Water Res., 19, 157‑162.
- TEE T.W. and R.M. KHAN (1988). Removal of lead, cadmium and zinc by waste tea leaves. Environ. Technol. Lett., 9, 1223-1232.
- TIEN C.J. (2002). Biosorption of metal ions by freshwater algae with different surface characteristics. Proc. Biochem., 38, 605-613.
- TOTI U.S. and T.M. AMINABHAVI (2002). Pervaporation separation of water-isopropyl alcohol mixtures with blend membranes of sodium alginate and poly(acrylamide)-grafted guar gum. J. Appl. Polymer Sci., 85, 2014-2024.
- TRIVEDI P. and L. AXE (2001). Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environ. Sci. Technol., 35, 1779-1784.
- TSEZOS M. (1997). Biosorption of lanthanides, actinides and related materials. In: Biosorbents for metal ions. WASE J., FORSTER C. [Ed.], Taylor & Francis Ltd, London, United Kingdom, pp. 87-113.
- TSEZOS M. and D. KELLER (1983). Adsorption of radium-226 by biological origin adsorbents. Biotechnol. Bioeng., 25, 201-215.
- TSEZOS M. and B. VOLESKY (1981). Biosorption of uranium and thorium. Biotechnol. Bioeng., 23, 583-604.
- TSEZOS M. and B. VOLESKY (1982). The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng., 24, 385-401.
- TSUI M.T.K., K.C. CHEUNG, N.F.Y. TAM, M.H. WONG (2006). A comparative study on metal sorption by brown seaweed. Chemosphere, 65, 51-57.
- URRUTIA M.M. (1997). General bacterial sorption processes. In: Biosorbents for metal ions. WASE J., FORSTER C. [Ed.], Taylor & Francis Ltd, London, United Kingdom, pp. 39-66.
- UTGIKAR V., B.Y. CHEN, H.H. TABAK, D.F. BISHOP, R. GOVIND (2000). Treatment of acid mine drainage: I. Equilibrium biosorption of zinc and copper on non-viable activated sludge. Int. Biodeterioration Biodegradation, 46, 19-28.
- VAISHYA R.C. and S.C. PRASAD (1991). Adsoprtion of copper(II) on sawdust. Indian J. Environ. Protection, 11, 284-289.
- VÁZQUEZ G., G. ANTORRENA, J. GONZÁLEZ, M.D. DOVAL (1994). Adsorption of heavy metal ions by chemically modified Pinus Pinaster bark. Bioresource Technol., 48, 251-255.
- VEGLIO F. and F. BEOLCHINI (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301-316.
- VEGLIO F., A. ESPOSITO, A.P. REVERBERI (2002). Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy, 65, 43-57.
- VEGLIO, F., F. BEOLCHINI, M. PRISCIANDARO (2003). Sorption of copper by olive mill residues. Water Res.. 37, 4895-4903.
- VENKOBACHAR C. (1990) Metal removal by waste biomass to upgrade wastewater treatment plants. Water Sci. Technol., 22, 319-320.
- VIRARAGHAVAN T. and A. KAPOOR (1994). Adsorption of mercury from wastewater by bentonite. Appl. Clay Sci., 9, 31-49.
- VIRARAGHAVAN T. and G.A.K. RAO (1993). Adsorption of cadmium and chromium from wastewater by peat. Int. J. Environ. Studies, 44, 9-27.
- VOLESKY B. (1990). Biosorption of heavy metals. CRC Press, Boca Raton, Florida, UNITED STATES.
- VOLESKY B. (1994). Advances in biosorption of metals: selection of biomass type. FEMS Microbiol. Rev., 14, 291‑302.
- VOLESKY B. (1999). Biosorption for the next century. In: Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Internat. Biohydrometallurgy Symposium Proceedings, volume B, BALLESTER, A. and AMILS, R. [Ed.] Elsevier Sciences, Amsterdam, The Netherlands, pp.161-170.
- VOLESKY B. (2003). Biosorption process simulation tools. Hydrometallurgy, 71, 179-190.
- VOLESKY B. H. MAY, Z.R. HOLAN (1993). Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol. Bioeng., 41, 826-829.
- VOLESKY B. and Z.R. HOLAN (1995). Biosorption of heavy metals. Biotechnol. Prog., 11, 235-250.
- VOLESKY B. and G. NAJA (2005). Biosorption: Application Strategies. In: Proceedings of the 16th Internat. Biotechnol. Symp, IBS-Compress Co., Cape Town, South Africa, pp. 531-542.
- VOLESKY B. and I. PRASETYO (1994). Cadmium removal in a biosorption column. Biotechnol. Bioeng., 43, 1010‑1015.
- WANG L.S., W. HAI-SUO, Z. AI-QIANG (2004). Immobilization study of biosorption of heavy metal ions onto activated sludge. J. Environ. Sci., 16, 640-645.
- WASE D.A.J. and C.F. FORSTER (1997). Biosorbents for metal ions. Taylor & Francis Ltd (Editors), London, United Kingdom, 238 pages.
- WASE D.A.J., C.F. FORSTER, Y.S. HO (1997). Low-cost biosorbents: batch processes. In: Biosorbents for metal ions. WASE J., FORSTER C. (Editors), Taylor & Francis Ltd, London, United Kingdom, pp. 141-163.
- WATTS R.J. (1998). Hazardous wastes: sources, pathways, receptors. John Wiley & Sons, (Editors) New York, New York, United States, 764 pages.
- WILLIAMS C.J. and G.J. EDYVEAN (1997). Ion exchange in nickel biosorption by seaweed materials. Biotechnol. Prog., 13, 424-428.
- WILSON M.W. and R.G. EDYVEAN (1994). Biosorption for the removal of heavy metals from industrial wastewaters. Institution of Chemical Engineers Symposium Series 1994. Environ. Biotechnol., 89-91.
- YANG J. and B. VOLESKY (2000). Modelling the uranium-proton ion exchange in biosorption. Environ. Sci. Technol., 33, 4049-4058.
- YU Q.M., J.T. MATHEICKAL, P.H. YIN, P. KAEWSARN (1999). Heavy metal uptake capacities of common marine macro algal biomass. Water Res., 33, 1534-1537.
- ZHOU J.L. and R.J. KIFF (1991). The uptake of copper from aqueous solution by immobilised fungal biomass. J. Chem. Technol. Biotechnol., 52, 317-330.
- ZOUMIS T., W. CALMANO, U. FORSTNER (2000). Demobilization of heavy metals from mine waters. Acta Hydrochim. Hydrobiol., 28, 212-218.