Résumés
Résumé
L’objectif de ce travail est de réaliser une caractérisation complète des margines brutes et décantées et d’étudier la diminution de la charge organique et des polyphénols en utilisant les techniques de coagulation-floculation.
Les essais de coagulation ont été réalisés à l’aide d’un banc de jar-test, constitué d’une série de six béchers. La série comporte une suspension témoin sans addition de coagulant ainsi que la même suspension soumise à des doses croissantes du coagulant (la chaux seule, le sulfate d’aluminium seul et la chaux combinée avec le sulfate d’aluminium).
Les tests de coagulation-floculation montrent que l’application de sulfate d’aluminium à une dose de 1,5 g/L et à un pH entre 6,31-7,08 permet d’éliminer 40 % de la DCO, 27 % des MES et 41 % des polyphénols, tandis que l’application de la chaux à une dose de 20 g/L permet d’éliminer 43 %, 75 % et 50 % de la DCO, des polyphénols et des MES respectivement. La combinaison d’une dose de 1,5 g/L de sulfate d’aluminium et de 20 g/L de chaux permet de réduire 70,5 % des MES, 38 % de la DCO, 54 % des polyphénols et 61 % de la coloration.
Il ressort de l’ensemble des résultats que le meilleur traitement par coagulation-floculation est obtenu par l’application de la chaux seule à une dose de 20 g/L et par la combinaison de 1,5 g/L de sulfate d’aluminium et de20 g/L de chaux.
Mots clés:
- margines,
- polyphénols,
- charge organique,
- sulfate d’aluminium,
- chaux
Abstract
Olive mill wastewaters (OMW) are a significant source of environmental pollution, especially in important olive oil producing countries such as Spain, Italy, Greece, Tunisia, Morocco, Turkey, Lebanon, Syria and Portugal. When discharged into the environment, olive mill wastewaters create serious environmental problems, such as colouring of natural waters, alteration of soil quality, phytotoxicity and nuisance odours.
Several methods have been reported for the removal of pollutants from these effluents. These technologies can be divided into three categories: biological, chemical and physical. Physical-chemical treatment is well known and has yielded promising results. Several authors have tested coagulation-flocculation techniques using different coagulants, such as aluminium sulphate, ferric chloride, ferric sulphate and lime, but there are few studies that have investigated the combined effect of a mixture of coagulants.
The objectives of this work were to carry out a complete characterization of the raw and decanted olive mill wastewater, resulting from a modern unit located in the Marrakesh region, and to study the reduction in organic load and phenol content achievable by coagulation-flocculation using two different coagulants (lime, aluminium sulphate) and their combination. The quantity of sludge produced by the different coagulants was also determined.
Coagulation tests were realized using jar test equipment in a series of six flasks. One flask corresponded to a control suspension without adding any coagulant. The other suspensions were treated with increasing coagulant concentrations of lime or aluminium sulphate, used separately (concentrations varying from 0 to 30 g/L and from 0 to 3 g/L, respectively) or in mixture. All solutions were stirred first for 3 min at 130 rpm, and then after the coagulant addition for 20 min at 30 rpm, followed by 1 h settling. Solution pH was adjusted to the desired value with sulphuric acid (4 N) or NaOH (5 N) before the coagulant was added. The supernatant was separated from the precipitate for analysis and the sludge was determined gravimetrically after drying at 100°C for 4h.
Raw olive mill wastewaters are acidic (pH 4.55) and due to this low pH value biological treatment of OMW is limited. OMW are also highly saline (electric conductivity 8.4 mS/cm), due to the salting practiced to preserve olives during trituration. These effluents contain also high loads of Chemical Oxygen Demand (COD of 72 g/L) and toxic polyphenols (1.4 g/L). Comparison of the characteristics of the raw and decanted olive mill wastewater showed that decantation for 3 months did not seem to affect the physical-chemical characteristics of the studies olive mill effluent, except for the concentration of the total suspended solids (TSS), which passed from 57 to 32 g/L.
Coagulation-flocculation tests showed that the application of aluminium sulphate without correction of the pH caused a small decrease of the pH from 4.67 to 4.54. The optimal elimination of the polyphenols (23%), TSS (24%) and colour (15%) was obtained with an amount of 1.5 g/L, whereas the optimum for elimination of COD (50%) was obtained with an amount of 1.8 g/L. These abatements demonstrate that the studied pH range did not allow very important elimination of the polluting loads, in particular for polyphenols. Adjust of the pH to 6.31-7.08 led to a slight improvement in the percentage of reduction of TSS (27%) and COD (40%), and the abatement of polyphenols passed from 23% to 41%. This application of aluminium sulphate alone generated only a small quantity of sludge, corresponding to the low degree of TSS removal. Lime application involved an increase in pH up to an addition of 15 g/L, after which the pH stabilized around 12. A lime application of 20 g/L resulted in the reduction of COD (43%), TSS (50%) and an important elimination of polyphenols (75%); sludge produced sludge after coagulation was significant (35 g/L).
The successive addition of lime to 1.5 g/L of aluminium sulphate raised the pH, starting from an amount of 10 g/L, and induced a removal of TSS (71%), COD (38%), polyphenols (54%) and colour (61%) at a dose of 20 g/L of lime. The successive addition of aluminium sulphate to 15 g/L of lime involved only a slight variation of the pH and allowed the elimination of TSS (48%), COD (36%), polyphenols (35%) and colour (70%) at a dose of 3 g/L of aluminium sulphate. Comparison between the two coagulant combinations indicated that the best TSS removal was obtained for an amount of 1.5 g/L of aluminium sulphate and 20 g/L of lime, but with a production of 40 g/L of sludge. In the case of the elimination of colour, the best combination was obtained for a dose of 3 g/L aluminium sulphate and 15 g/L of lime, with a production of only 30 g/L of sludge. All in all, the best coagulation-flocculation was obtained by application of 20 g/L of lime (used alone) and by the combination of 1.5 g/L of aluminium sulphate and 20 g/L of lime, which gave a better elimination of the colloidal particles, a good reduction of the organic matter causing colour and the toxic polyphenols. The quantity of the sludge produced from the test with lime alone was 35 g/L, whereas the combination of lime and aluminium sulphate produced 40 g/L. Analysis of variance showed that the production of sludge for the two coagulants did not present statistically significant differences (p>0.05).
Key words:
- olive mill wastewater,
- organic load,
- polyphenols,
- coagulation-flocculation,
- aluminium sulphate,
- lime
Parties annexes
Références bibliographiques
- AFNOR (1983). Recueil de normes françaises : eau, méthodes d’essai, 2e Édition, Paris, France, 621 p.
- AKTAS E.S., S. IMER, L. ERSOY (2001). Characterization and lime treatment of olive mill wastewater. Wat. Res., 35, 2336-2340.
- AL-MALLAH K., M.O.J. AZZAM, N.I. ABU-LAILM (2000). Olive mill effluent (OME) wastewater post-treatment using actived clay, Sep. Pur.Technol., 20, 225-234.
- AMIRANTE P., A. MONTERVINO (1996). Épuration par concentration thermique des effluents des huileries d’olives et compostage du concentré. Une expérience appliquée dans les pouilles. Olivae, 63, 64-69.
- AMIRTHARAJAH A. (1988). Some theoretical views of filtration. JAWWA, 146, 36-46.
- AMIRTHARAJAH A., C.R. O’MELLA (1990). Coagulation processes: destabilization, mixing, and flocculation. Dans : Water quality and treatment: a handbook of community water supplies. A WWA. 4e édition, p. 269-365.
- APHA (1992). American Public Health Association 1992. Standard methods for analysis of waste and waste water. APHA. Pub., 18th Ed. Washington, DC.
- AZZOUZI R. (1997). Traitement physico-chimique des margines par l’utilisation des sols argileux, mémoire d’ingénieur d’état option : industrie agro-alimentaires I.A.V. Hassan II, Rabat, Maroc, 73-102.
- BACCIONI L. (1981). Riciclo elle acque e lero incenerimento : una solazione per la depurazione delle acque dei frantoi. Riv. Ital. Sostanze Grass. L. V. III, 34-37.
- BLACK A.P., D.G. Willems (1961). Electrophoretic studies of coagulation for removal of organic color. J. Am. Water Works Assoc., 53-589.
- BALICE V., C. CARRIERI, O. CERA, A. DIFACIO (1986). Natural biodegradation in olive mill effluents stored in opened basins. In: International symposium on olive by products valorization, FAO, 101-108. Seville, Spain.
- BALICE V., C. CARRIERI, O. CERA, B. RINDON (1988). The fate of tannin-like compounds from olive mill effluents in biological treatment. In: Proceedings of the Fifth International Symposium: On Anaerobic Digestion. Hall E.R. and P.N. Hobson (Éditeurs). Bologna, Academic Press. Italy, 275-280.
- CATHALIFAUD G., J. AYELE, M. MAZET (1997). Aluminum ion/organic molecules complexation: formation constants and stochiometry. Application to drinking water production. Wat. Res., 31, 689-698.
- COI (2001). Le marché international de l’huile d’olive. Olivae 85, 22-25.
- DI GIOVACCHINO L., A. MASCOLO, L. SEGUETTI (1988). Sulle caracteristiche telle delle acque di vegetazione delle olive. Riv. Ital. Sostanze Grasse, 71‑587.
- DUBOIS M., F.A. GILLES, J.K. HAMILTON, P. A RBERS., F. SMITH (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350‑356.
- ERSOY L., E.G. GONZALES, S. ESERM, S. IMER, (1998). Preparation of active carbons from OMW residua. Science and technology of carbon congress 257, Strasbourg, France.
- FEDERICO I.T.A., A. SALVATION, B. MARION (2004). Complexation of organic compound in the presence of Al3+ during micellar flocculation. Wat. Res., 38, 1477-1483.
- FIESTAS ROS URSINOS J.A., G.R. NAVARRO, A.J. GARCIA, G.M. MAESTRO (1983). Épuration des margines par digestion anaérobie en vue de leur utilisation comme source d’énergie. Val. sous-prod. olivier, 131-139.
- FIESTAS ROS URSINOS J.A., G.R. NAVARRO, G.R. LEON, B.A. GARCIA, G.M. MAESTROJUAN SAEZ DE JAURAGUI (1982). Depuracion del apechin como fuente de energia. Grasas y Aceites, 33, 265-270.
- FLOURI F., D. SOTIRCHOS, S. IOUNNIDOU, C BALIS. (1996). Decolorization of olive mill liquid wastes by chemical and biological means, Int. Biodeterior. Biodegrad., 38, 189-192.
- GEORGIOU D., A. AIVAZIDAS, J. HATIRAS, GIMOUHOPOULOS K., (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate, Water Res. 37, 2248-2250.
- HAMDI M. (1993). Valorisation et épuration des effluents des huileries d’olive : l’utilité de la microbiologie industrielle. Olivae, 46, 20-24.
- HAMDI M. (1992). Toxicity and biodegradability of olive mill wastewater’s in batch anaerobic digestion. Appl. Biotechnol., 2, 155-163.
- HAMDI M., J.L. GARCIA, (1991). Comparison between anaerobic filter and anaerobic contact of olive mill wastewaters. Appl. Microbial. Rev., 13, 125-135.
- INAN I., A. DIMOGLO, H. SIMSEK, M. KARPUZCU, (2004). Olive mill wastewater treatment by means of electro-coagulation, Sep. Pur. Technol. 36, 23-31.
- JAOUANI A., M. VANTHOURNHOUT, MJ. PENNINCKX, (2005). Olive oil mill wastewater purification by combination of coagulation-flocculation and biological treatments. Environ. Technol. 26(6), 633‑41.
- KHOUFI S., F. ALOUI, S. SAYADI, (2000). Anaerobic digestion of olive mill wastewater after Ca(OH)2 pretreatment and reuse adapted, Proc. Internat. Conf. on wastewater treatment and reuse adapted to Mediterranean area (WATRAMA), 85-89.
- KISSI M., (2002). Étude des eaux résiduaires des huileries d’olives (margines) : Caractérisation et traitement. Thèse de doctorat, faculté des sciences El Jadida, Maroc, 74-84.
- MACHEIX J. J., A. FLAURIET, J.A. BILLOT, (1990). Fruit phenolics. CRC Press Inc, Boca Raton Florida, 378.
- MANTZAVINOS D., N. KALOGERAKIS, (2005). Treatment of olive mill effluents. Part. I. organic matter degradation by chemical and biological processes-an overview, Environ. Int. 31, 289-295.
- MORINO-CASTILLO C., F. CARRASCO-MARIN, M.V. LOPEZ-RAMON, M.A. ALVAREZ-MERINO (2001). Chemical and physical activation of olive mill wastewater to produce actived carbons, Carbon, 39, 1415‑1420.
- RANALLI A. (1991a). L’effluent des huileries d’olive : Propositions en vue de son épuration. Références aux normes italiennes en la matière. Première partie. Olivae, 37, 30-39.
- RANALLI A., (1991b). L’effluent des huileries d’olive : propositions en vue de son épuration. Références aux normes italiennes en la matière. Troisième partie. Olivae, 39, 18-34.
- RODIER J. (1984). L’analyse de l’eau : eaux naturelles, eaux résiduaires, eau de mer, 7e édition : DUNOD, BORDAS, Paris, France, 1365p.
- SARIKA R., N. KALOGERAKIS, D. MANTZARIROS, (2005). Treatment of olive mill effluents. Part II. Complete removal of solids direct floculation with poly-electrolytes, Environ. Int. 31, 297-304.
- SAYADI S., N. ALLOUCHE, M. JAOUA, F. ALOUI, (2000). Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment, Process Biochem. 35, 725-735.
- SAYADI S., R. ELLOUZ (1995). Roles of lignin peroxidas and manganes peroxidase from phanerochaete chrysosporium in the decolorization of olive mill wastewaters, Appl. Environ. Microb. 61, 1098-1103.
- VITOLO S., L. PETARCA, B. BRESCI (1999). Treatment of olive oil industry wastes, Bioresour. Technol., 67, 129-137.