Résumés
Résumé
La sorption des ions chromate de solutions aqueuses sur une hydrotalcite de synthèse et sur son produit de calcination a été étudiée. L’interaction de ces matériaux avec les ions chromate montre que la cinétique de sorption est rapide et suit une expression de vitesse de sorption réversible du premier ordre. Les influences du pH, de la concentration en ions chromate de la solution et de la température ont été étudiées afin d’optimiser la sorption. Le traitement de solutions contenant de 10 à 200 mg L-1 de Cr(VI) a donné de bons résultats. Les capacités de sorption de ces matériaux sont 1,3 et 2,4 mmol g‑1 de Cr(VI), respectivement. L’étude de la réversibilité de la sorption des ions chromate indique qu’il est possible d’utiliser les hydrotalcites calcinées comme sorbants recyclables. Ceci suggère notamment que ces derniers pourraient constituer d’intéressants supports pour le piégeage d’ions chromate.
Mots clés:
- Traitement de l’eau,
- hydroxyde double lamellaire,
- hydrotalcite,
- sorption,
- chromate
Summary
The sorption of chromate ions from aqueous solutions onto a synthetic hydrotalcite and its calcination product was investigated. The interaction of these materials with chromate ions shows that the kinetics of sorption are fast and follow a first-order reversible model. The effects of pH, chromate ion concentration and temperature on the sorption were studied. Solutions containing from 10 to 200 mg L‑1 of Cr(VI) were successfully treated. The sorption capacities of these materials are approximately 1.3 and 2.4 mmol CrO42-, per g, for the hydrotalcite and its calcination product, respectively. The reversibility of the sorption of chromate ions suggests the possible use of the calcined hydrotalcites as recyclable sorbents, which may constitute useful supports for trapping chromate ions.
Key words:
- Water treatment,
- layered double hydroxide,
- hydrotalcite,
- sorption,
- chromate
Parties annexes
Références bibliographiques
- AGGARWAL D., M. GOYAL et R.C. BANSAL (1999). Adsorption of chromium by activated carbon from aqueous solution. Carbon, 37, 1989-1997.
- BAES A.U., T. OKUDA, W. NISHIJIMA, E. SHOTO et M. OKADA (1997). Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir. Water Sci. Technol., 35, 89-95.
- BELMOUDEN M., A. ASSABBANE et Y. AIT ICHOU (2001). Removal of 2,4-dichloro phenoxyacetic acid from aqueous solution by adsorption on activated carbon. A kinetic study. Ann. Chim. Sci. Mat., 26, 79-85.
- BOJIC A., M. PURENOVIC et D. BOJIC (2004). Removal of chromium (VI) from water by micro-alloyed aluminium composite (MAlC) under flow conditions. Water SA, 30, 353-359.
- DE ROY A., C. FORANO, K. EL MALKI et J.-P. BESSE (1992). Anionic clays. Dans : Synthesis of microporous materials. OCCELLI M.L. et H.E. ROBSON (Éditeurs), Van Nostrand Reinhold, New-York, États-Unis, pp. 108‑169.
- EATON A.D, L.S CLESCERI et A.E GREENBERG (1995). Standard methods for the examination of water and wastewater, APHA, AWWA, WPCF, APHA, Washington, DC, États-Unis, pp. 4-23.
- ECKENFELDER W.W. (1982). Gestion des eaux usées urbaines et industrielles. Technique & Documentation, Lavoisier, Paris, France, 423 p.
- GOSWAMEE R.L., P. SENGUPTA, K.G. BHATTACHARYYA et D.K. DUTTA (1998). Adsorption of Cr(VI) in layered double hydroxides. Appl. Clay Sci., 13, 21-34.
- HOURI B., A. LEGROURI, A. BARROUG, C. FORANO et J.-P. BESSE (1999). Removal of chromate ions from water by anionic clays. J. Chim. Phys., 96, 455-463.
- KAMEDA T., F. YABUUCHI, T. YOSHIOKA, M. UCHIDA et A. OKUWAKI (2003). New method of treating dilute mineral acids using magnesium-aluminium oxide. Water Res., 37, 1545-1550.
- KHAN S.A., RIAZ-UR-REHMAN, et M.A. KHAN (1995.) Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Manage., 15, 271-282.
- LAZARIDIS N.K. et D.D. ASOUHIDOU (2003). Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg‑Al‑CO3 hydrotalcite. Water Res., 37, 2875-2882.
- MENDIBOURE A. et R. SCHÖLLHOM (1986). Formation and anion exchange reaction of layered transition metal hydroxides [Ni1-x Mx](OH)2(CO3)x/2(H2O)x (M = Fe,Co). Rev. Chim. Min., 23, 819-827.
- MIYATA S. (1983). Anion-exchange properties of hydrotalcite-like compound. Clays Clay Miner., 31, 305-311.
- NOMURA R., T. MORI, E. KANEZAKI et T. YABUTANI (2003). Removal of phosphate in water to layered double hydroxide. Internat. J. Modern Phys. B., 17, 1458-1463.
- REICHLE W.T. (1986). Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135-141.
- ROELOFS J.C.A.A., J.A. VAN BOKHOVEN, A.J. VAN DILLEN, J.W. GEUS et K.P. DE JONG (2002). The thermal decomposition of Mg-Al hydrotalcites: Effects of interlayer anions and characteristics of the final structure. Chem. Eur. J., 8, 5571-5579.
- SAHA B., R.J. GILL, D.G. BAILEY, N. KABAY et M. ARDA (2004). Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with aliquat 336. React. Funct. Polym., 60, 223-244.
- TORAISHI T., S. NAGASAKI et S. TANAKA (2002). Adsorption behavior of IO3- by CO3- and NO3- hydrotalcite. Appl. Clay Sci., 22, 17-23.
- YOU Y, G.F VANCE et H. ZHAO (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Appl. Clay Sci., 20, 13-25.