Résumés
Résumé
La concentration en oxygène dissous en milieu fluvial varie selon un cycle diurne (24 h) qu’il est essentiel de considérer dans l’évaluation de l’état d’oxygénation d’un cours d’eau. En principe, seules des mesures en continu recueillies au cours de cycles de 24 h permettent d’évaluer correctement l’état d’oxygénation d’une rivière, ce que, en pratique, les contraintes logistiques et budgétaires ne permettent pas de réaliser. Le présent article vise à faire la synthèse des connaissances sur les facteurs de contrôle et la modélisation des variations diurnes de la concentration en oxygène dissous en rivière. Parmi les facteurs biologiques et physico-chimiques, les activités autotrophe et hétérotrophe sont les facteurs dominants responsables des variations diurnes de l’oxygène dissous. Certains modèles de qualité de l’eau permettent de modéliser la teneur en oxygène et, dans certains cas, la variation diurne. Toutefois, ces modèles sont souvent complexes, d’utilisation ardue et impliquent la mesure directe sur des cycles de 24 h des variables qui régissent la concentration en oxygène dans le milieu. Une démarche est proposée pour l’élaboration d’un modèle et a été appliquée dans une étude de cas réalisée dans la rivière Saint-Charles (Québec, Canada). Un modèle simple (une fonction sinusoïdale) dont les paramètres ont été corrélés à la température et à la concentration moyenne en nitrate a permis de générer des valeurs simulées d’oxygène dissous très proches des valeurs observées in situ. Un modèle alternatif utilisant des valeurs ponctuelles de température et de concentration de nitrate a donné des résultats équivalents. L’approche proposée constitue donc une alternative simple et pratique à la mesure en continu de l’oxygène et permet une évaluation plus réaliste de l’état réel d’oxygénation d’une rivière que la prise de mesures ponctuelles.
Mots clés:
- oxygène,
- dynamique,
- modélisation,
- cycle diurne,
- qualité de l’eau,
- rivière,
- photosynthèse,
- respiration
Summary
In rivers, dissolved oxygen concentrations typically show diel variations with maximum values during daytime and minimum values at night. The diel cycle must be taken into account when assessing the state of oxygenation of a watercourse. However, in water quality monitoring programs, dissolved oxygen concentrations are usually obtained from single measurements taken during daytime. The resulting data do not represent the real overall oxygen levels of a watercourse and thus can lead to erroneous conclusions regarding the oxygen status of a river. Continuous data collected over 24‑hour cycles are required for an accurate oxygen status assessment, but in practice, logistic and budget constraints do not allow such samplings. Modelling can be a convenient alternative to direct measurements. However, the water quality models that take into account the diel cycle of oxygen are generally complex to run. The purpose of this study was to review the information relating to the dynamics and the modelling of the diel variations in dissolved oxygen in rivers and to apply a simple model in a case study involving dissolved oxygen, nutrients, temperature and chlorophyll a data collected over 24‑hour cycles in the St. Charles River near Quebec City (Canada).
Photosynthesis by algae, both benthic and planktonic, as well as by macrophytes, is an important and sometimes dominant factor in the oxygen budget of a river. Sediments and heterotrophic activity by bacteria, particularly in rivers receiving important loads of wastewaters, can be important sinks for oxygen. Temperature determines the solubility of oxygen, thereby directly influencing oxygen concentrations. Diel variations in oxygen thus reflect diel variations in temperature. Temperature also has an effect on biological processes such as respiration and photosynthesis. Reaeration varies not only with temperature, but also with the type of flow (laminar vs. turbulent) and current velocity. In rivers with important slopes and current velocities, reaeration can be sufficient to make up for oxygen losses due to high heterotrophic activity. Nevertheless, light is the first causative factor for the diel variations in oxygen, determining both autotrophic activity and water temperature. However, suspended matter in the water column reduces light penetration. Higher levels of suspended matter result in lower levels of photosynthesis and oxygen production. The sudden or large influx of runoff waters after heavy rain or snowmelt can also have an important impact on the oxygen budget of a river. Finally, chemical factors can have an influence on the diel variations in oxygen: nutrient inputs, in particular, can stimulate the rate of photosynthesis and oxygen production. Overall, oxygen dynamics are determined by the relative importance of biological, physical and chemical factors, which vary in time and space. However, biological processes often dominate over the other causative factors affecting diel variations in oxygen. In temperate climates, biological processes have a controlling function only during warmer months, with temperature and flow being the dominant controlling factors during colder months.
Water quality models that take into account diel variations in oxygen are often designed to assess primary production and respiration. These models are based on either ODUM’s (1956) concept of oxygen curves or on direct and continuous measurements of dissolved oxygen. Periodic functions or Fourier series are also used to simulate diel variations in oxygen. The widely used USEPA QUAL2e model predicts diel variations in oxygen from different measurements including light intensity and from computation of the rates of photosynthesis and respiration. Several other modelling approaches use various combinations of indirect methods to predict the variations in oxygen, based on light intensity, algal biomass, primary production, and reaeration. Specific models are sometimes necessary due to particular regional characteristics or environmental issues.
In general, water quality models designed for water management purposes are complex and require the measurement of a large number of parameters, which necessitates elaborate and costly logistics. Estimating the parameters controlling the oxygen budget in a river thus ends up being more time and labour consuming than the direct measurement of diel variations in oxygen. A simpler model leading to the estimation of the concentrations and the amplitude of the variations of dissolved oxygen was developed and applied to the St. Charles River.
The St. Charles River flows from the Laurentians north of Quebec City to the St. Lawrence River. The vast upper watershed is mostly forested, but the lower part is heavily urbanized. Two stations were located in the upper watershed and one in the section of the river within Quebec City. Water quality was excellent at the upstream stations and poor at the downstream station, due to wastewater inputs and low flow rates. Sampling was carried out in the months of July and August of 1996 and 1997. Physico-chemical and light measurements were made every two hours for periods of 24 hours. Nutrient and chlorophyll a samples were collected every four hours. Small diel variations in oxygen (amplitude: 1.48 mg/L) were observed at the upstream station, while much larger ones (amplitude: 4.23 mg/L) were measured at the downstream station. Modelling of the diel variations in oxygen was carried out using a sine function. Oxygen concentrations over 24 hours were successfully predicted from average concentration of dissolved oxygen, amplitude, and phase of the cycle. Average oxygen concentrations and amplitude can be derived from physico-chemical and/or biological variables easily measured in standard water quality monitoring programs. Average oxygen concentrations showed a very strong correlation with temperature (r2 = 0.91) and amplitude of oxygen level variations was strongly correlated with average nitrate concentration (r2 = 0.58). These relations were used in the sine function and resulted in significantly correlated modelled and measured oxygen concentrations for six of the seven cycles. Overall correlation between modelled and observed values was high (r2 = 0.77). Modelled values obtained with single measurements of temperature (taken at 2:30 P.M.) and nitrate concentration (which shows no diel variation) were also highly correlated with observed data (r2 = 0.75). Absolute and relative bias as well as root-mean-square error also showed the validity and the equivalence of the two approaches.
This study shows that simple models based on available water quality data may generate realistic oxygen values over 24‑hour cycles. These models would be a valuable diagnostic and decision making tool for the management of water quality in rivers.
Key words:
- oxygen dynamics,
- modelling,
- diel cycle,
- water quality,
- river,
- photosynthesis,
- respiration
Parties annexes
Références bibliographiques
- AMBROSE R.B.JR., WOOL T.A., CONNOLLY J.P. et R.W.SCHANZ, 1988. WASP4, A hydrodynamic and water quality model - model theory, user’s manual, and programmer’s guide. U.S. Environmental Protection Agency report. Athens, Georgia. EPA/600/3-87/039.
- ANTOINE Y.W.S. et D. BOWKER, 1996. Hydrological and environmental characteristics of the River Taff, South Wales, U.K. Limnologica, 26, 217-233.
- BACHMANN R.W., KORTGE K.J. et T.E. ROBERTSON, 1988. Primary production in a small agricultural stream. Verh. Int. Ver. Theor. Angew. Limnol., 23, 1179-1182.
- BARILLIER A., GARNIER J. et M. COSTE, 1993. Experimental reservoir water release: impact on the water quality on a river 60 km downstream (upper Seine River, France). Water Res., 27, 635-643.
- BENGEN D., LIM P. et A. BELAUD, 1992. Qualité des eaux de trois bras morts de la Garonne : variabilité spatio-temporelle. Rev. Sci. Eau, 5, 131-156.
- BILLEN G., GARNIER J., SERVAIS P., BRION N., FICHT A., EVEN S., BERTHE T. et M. POULIN, 1999. L’oxygène : un témoin du fonctionnement microbiologique. Programme scientifique Seine-Aval, vol. 5. Université de Rouen. Rouen.
- BOWIE G. L., MILLS W. B., PORCELLA D. B., CAMPBELL C. L., PAGENKOPF J.R., RUPP G.L., JOHNSON K.M., CHAN P.W.H. et S.A. GHERINI, 1985. Rates, constants, and kinetics formulations in surface water quality modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Athens, Georgia. EPA/600/3-85/040.
- BREZONIK P.L., 1994. Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers, Boca Raton, 784 p.
- BROWN L.C. et J. BARNWELL, 1987. The enhanced stream water quality models QUAL2W and QUAL2E-UNCAS: documentation and user manual. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Athens, Georgia. EPA/600/3-87/007.
- BUSHONG S.J. et R.W. BACHMANN, 1989. In situ nutrient enrichment experiments with periphyton in agricultural streams. Hydrobiol., 178, 1-10.
- BUTCHER J.B. et S. COVINGTON, 1995. Dissolved-oxygen analysis with temperature dependence. J. Environ. Eng., 121, 756-759.
- CHAPRA S.C., 1997. Surface water-quality modeling. McGraw-Hill, New York, 784 p.
- CHAPRA S.C. et D.M. DI TORO, 1991. Delta method for estimating primary production, respiration, and reaeration in streams. J. Envir. Eng., 117, 640-655.
- CHAUDHURY R.R., SOBRINHO J.A.H., WRIGHT R.M. et M. SREENIVAS, 1998. Dissolved oxygen modeling of the Blackstone River (northeastern United States). Water Res., 32, 2400-2412.
- CHESTERIKOFF A., GARBAN B. et D. OLLIVON, 1991. Daily rhythms in the River Seine: relative impacts of natural and anthropogenic factors. Water Res., 25, 1523-1528.
- DUNNETTE D.A. et R.M. AVEDOVECH, 1983. Effect of an industrial ammonia discharge on the dissolved oxygen regime of the Willamette River, Oregon. Water Res., 17, 997-1007.
- EL-SHAARAWI A.H., MAUL A. et B.G. BROWNLEE, 1988. Modélisation des fluctuations de l’oxygène dissous dans les cours d’eau par analyse de régression non linéaire. Direction générale des eaux intérieures, Institut National de Recherche sur les Eaux, Centre Canadien des Eaux Intérieures. Burlington, Ontario. Étude No 163, 9 p.
- ERDMANN J.B., 1979a. Systematic diurnal curve analysis. J. Water Pollut. Contr. Fed., 15, 78-86.
- ERDMANN J.B., 1979b. Simplified diurnal curve analysis. J. Envir. Eng., 105, 1063-1074.
- FALCONER R.A., 1992. Water Quality Modelling. Ashgate, Brookfield, 139 p.
- FILLION S., BLANCHET,D., BEAULIEU B., BERTHOD C., THÉRIAULT A. et C. TREMBLAY, 1987. Rivière Saint-Charles : contexte évolutif et potentiel de développement. Service de l’urbanisme, Ville de Québec, 43 p.
- GARNIER J., SERVAIS P., BILLEN G., AKOPIAN M. et N. BRION, 2001. Lower Seine River and estuary (France) carbon and oxygen budgets during low flow. Estuaries, 24, 964-976.
- GERARDIN V. et Y. LACHANCE, 1997. Vers une gestion intégrée des bassins versants. Atlas du cadre écologique de référence du bassin versant de la rivière Saint-Charles, Québec, Canada. Ministère de l’Environnement et de la Faune du Québec. Ministère de l’Environnement du Canada.
- GOWDA T.P.H., 1983. Modelling nitrification effects on the dissolved oxygen regime of the Speed River. Water Res., 17, 1917-1927.
- GUASCH H., ARMENGOL J., MART E. et S. SABATER, 1998. Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Water Res., 32, 1067‑1074.
- GULLIVER J.S. et H.G. STEFAN, 1984a. Stream productivity analysis with DORM-I, development of a computational model. Water Res., 18, 1569-1576.
- GULLIVER J.S. et H.G. STEFAN, 1984b. Stream productivity analysis with DORM-II, parameter estimation and sensitivity. Water Res., 18, 1577-1588.
- HAMMER M.J. et K.A. MacKICHAN, 1980. Hydrology and Quality of Water Resources. John Wiley & Sons, New York, 486 p.
- HÉBERT S., 1995. Qualité des eaux du bassin de la rivière Saint-Charles, 1979-1995. Ministère de l’Environnement et de la Faune, Québec. Rapport No QE-101, 41 p.
- HORNE A.J. et C.R. GOLDMAN, 1994. Limnology. 2e édition. McGraw-Hill, New York, 576 p.
- HOWARTH R. W., MARINO R., GARRITT R. et D. SHERMAN, 1992. Ecosystem respiration and organic carbon processing in a large, tidally influenced river: the Hudson River. Biogeochem., 16, 83-102.
- JACOBS L.A., VON GUNTEN H.R., KEIL R. et M. KUSLYS, 1988. Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. A., 52, 2693-2706.
- KAENEL B.R., BUEHRER H. et U. UEHLINGER, 2000. Effects of aquatic plant management on stream metabolism and oxygen balance in streams. Freshwater Biol., 45, 85‑95.
- KELLY M.G., HORNBERGER G.M. et B.J. COSBY, 1974. Continuous automated measurement of rates of photosynthesis and respiration in an undisturbed river community. Limnol. Oceanogr., 19, 305-312.
- LAANE R.W.P.M., GIESKES W.W.C., KRAAY G.W. et A. EVERSDIJK, 1985. Oxygen consumption from natural waters by photo-oxidizing processes. Netherlands J. Sea Res., 19, 125-128.
- LAVALLÉE P., 1983. Rapport technique, rivière Saint-Charles. Ministère de l’Environnement du Québec, Direction de l’assainissement des eaux, Québec, 24 p.
- LÉGARÉ S., 1998. Dynamique de l’oxygène en lac et en rivière dans le bassin versant de la rivière Saint-Charles. Mémoire Maîtrise, Université Laval, Sainte-Foy, 146 p.
- LIVINGSTONE D.M., 1991. The diel oxygen cycle in three subalpine Swiss streams. Arch. Hydrobiol., 120, 457-479.
- MARZOLF E.R., MULHOLLAND P.J. et A.D. STEINMAN, 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique of determining whole-stream metabolism in small streams. Can. J. Fish. Aquat. Sci., 51, 1591-1599.
- McCUTCHEON S.C., 1989. Volume I. Transport and Surface Exchange in Rivers. CRC Press, Las Vegas, NV, 344 p.
- MORIN G., CLUIS D., COUILLARD D., JONES H.G. et J.M. GAUTHIER, 1984. Modélisation de l’oxygène dissous et de la demande biochimique en oxygène à l’aide du modèle quantité-qualité CEQUEAU. Université du Québec, Institut national de la recherche scientifique, INRS-Eau. Sainte-Foy. Rapport No 155, 107 p.
- MÜLLER J. et G. WEISE, 1987. Oxygen budget of a river rich in submerged macrophytes (River Zschopau in the south of the GDR). Int. Rev. Gesamten Hydrobiol., 72, 653-667.
- NEAL C., WATTS C., WILLIAMS R.J., NEAL M., HILL L. et T.H. WICKMAN, 2002. Diurnal and longer term patterns in carbon dioxide and calcite saturation for the River Kennet, south-eastern England. Sci. Total Environ., 282-283, 205-231.
- NING S.K., CHANG N.-B., YANG L., CHEN H.W. et H.Y. HSU, 2001. Assessing pollution prevention program by QUAL2E simulation analysis for the Kao-Ping River Basin, Taiwan. J. Envir. Manage., 61, 61-76.
- O’CONNOR D.J. et D.M. DI TORO, 1970. Photosynthesis and oxygen balance in streams. J. Sanit. Eng. Div. ASCE, 96, 547-571.
- ODUM H.T., 1956. Primary production in flowing waters. Limnol. Oceanogr., 1, 102-117.
- PAINCHAUD J., 1997. La qualité de l’eau des rivières du Québec. Nat. Can., 121, 38-43.
- PALMER, M.D., 2001. Water quality modeling. A guide to effective practice. The World Bank, Washington, D.C., 157 p.
- QUINN J.M. et P.N. McFARLANE, 1989. Epilithon and dissolved oxygen depletion in the Manawatu River, New Zealand: simple models and management implications. Water Res., 23, 825-832.
- RAUCH W. et P.A. VANROLLEGHEM, 1998. Modelling benthic activity in shallow eutrophic rivers. Wat. Sci. Tech., 37, 129-137.
- RICKERT D.A., 1984. Use of dissolved oxygen modeling results in the management of river quality. J. Water Pollut. Contr. Fed., 56, 94-101.
- SABATER S., ARMENGOL J., COMAS E., SABATER F., URRIZALQUI I. et I. URRUTIA, 2000. Algal biomass in a disturbed Altantic river: water quality relationships and environmental implications. Sci. Total Environ., 263, 185‑195.
- SCHURR J.M. et J. RUCHTII, 1977. Dynamics of O2 and CO2 exchange, photosynthesis, and respiration in rivers from time-delayed correlations with ideal sunlight. Limnol. Oceanogr., 22, 208-225.
- SEIDL M., SERVAIS P. et J.M. MOUCHEL, 1998. Organic matter transport and degradation in the River Seine (France) after a combined sewer overflow. Water Res., 32, 3569-3580.
- SIMONSEN J.F. et P. HARREMOËS, 1978. Oxygen and pH fluctuations in rivers. Water Res., 12, 477-489.
- STAHL B. et C.G UCHRIN, 1989. Dissolved oxygen dynamics in the mid-Passaic River (New Jersey, USA): Mathematical model. J. Environ. Sci. Health Part A Environ. Sci. Eng., A24, 175-193.
- TCHOBANOGLOUS G. et E.D. SCHROEDER, 1985. Water quality, characteristics, modeling, modification. Addison-Wesley Publising Company, Reading, UK, 768 p.
- THYSSEN N. et M. ERLANDSEN, 1987. Reaeration of oxygen in shallow, macrophyte rich streams: II. Relationship between the reaeration rate coefficent and hydraulic properties. Int. Rev. Gesamten Hydrobiol., 72, 575-597.
- UCHRIN C.G., AHLERT W.K., CRYAN A.P., GIGA J.V., HSUEH S.-F., JENQ T.-R., LEWIS T., PARK S.S. et B. STAHL, 1988. Dissolved oxygen dynamics in the mid-Passaic River (New Jersey, USA): late summer/early fall 1983-4 field studies. J. Environ. Sci. Health Part A Environ. Sci. and Eng., A23, 525-542.
- VAN ORDEN G.N. et C.G. UCHRIN, 1993. The study of dissolved oxygen dynamics in the Whippany River, New Jersey using the QUAL2E model. Ecol. Model., 70, 1-17.
- WETZEL R. G., 2001. Limnology, lakes and river ecosystems. 3e édition. Academic Press, San Diego, 1006 p.
- WETZEL R.G. et G.E. LIKENS, 2000. Limnological analysis. 2e édition. Springer-Verlag, New York, 429 p.
- WHITEHEAD P.G., WILLIAMS R.J. et D.R. LEWIS, 1997. Quality simulation along river systems (QUASAR): model theory and development. Sci. Total Environ., 194/195, 447-456.
- WILCOCK R.J., McBRIDE G.B., NAGELS J.W. et G.L. NORTHCOTT, 1995. Water quality in a polluted lowland stream with chronically depressed dissolved oxygen: Causes and effects. New Zealand J. Mar. Freshwater Res., 29, 277‑288.
- WILLIAMS R.J., WHITE C., HARROW M.L. et C. NEAL, 2000. Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Sci. Total Environ., 251/252, 497-510.