Résumés
Résumé
Le présent article est une exemplification méthodologique de l’utilisation des graphiques Johnson-Neyman pour interpréter l’effet d’interaction entre variables latentes. Il fait suite à l’exemplification méthodologique de Girard et Béland (2017) et apporte certaines mises à jour au regard des analyses précédemment exemplifiées. De plus, il propose une autre façon d’interpréter l’effet d’interaction qui comporte des avantages en comparaison avec la méthode « sélection d’un point ».
Mots-clés :
- interaction avec variables latentes,
- LMS,
- équations structurelles,
- Johnson-Neyman,
- éducation physique
Abstract
This article is a methodological exemplification of the use of Johnson-Neyman’s graphs to interpret the interaction effect between latent variables. It follows the methodological exemplification of Girard and Béland (2017) and provides some updates regarding previously exemplified analyses. Also, it proposes another way of interpreting the interaction effect which has some advantages compared to the “select a point” method.
Keywords:
- latent interaction,
- Latent Moderated Structural Equations,
- structural equation modeling,
- Johnson-Neyman,
- physical education
Resumen
El presente artículo presenta una ejemplificación metodológica de la utilización de los gráficos de Johnson-Neyman para interpretar el efecto de la interacción entre variables latentes. El artículo es una continuación de la ejemplificación metodológica presentada en Girard y Béland (2017) y aporta ciertas actualizaciones con respecto a los análisis previamente ejemplificados. Además, propone otra forma de interpretar el efecto de la interacción, que comporta ventajas en comparación con el método de “selección de un punto”.
Palabras clave:
- interacción con variables latentes,
- LMS,
- ecuaciones estructurales,
- Johnson-Neyman,
- educación física
Parties annexes
Bibliographie
- Aiken, L. S. et West, S. G. (1991). Multiple regression: Testing and interpreting interactions. SAGE Publications.
- Aguinis, H. (1995). Statistical power problems with moderated multiple regression in management research. Journal of management research, 21(6), 1141-1158. https://doi.org/10.1016/0149-2063(95)90026-8
- Ames, C. et Archer, J. (1988). Achievement goals in the classroom: Students’ learning strategies and motivation processes. Journal of educational psychology, 80(3), 260-267. https://doi.org/10.1037/0022-0663.80.3.260
- Barrett, J. P. (1974). The coefficient of determination − Some limitations. The American statistician, 28(1), 19-20. https://doi.org/10.1080/00031305.1974.10479056
- Bauer, D. J. et Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate behavioral research, 40(3), 373-400. https://doi.org/10.1207/s15327906mbr4003_5
- Baumeister, R. F. et Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological bulletin, 117(3), 497-529. http://dx.doi.org/10.1037/0033-2909.117.3.497.
- Béland, S. et Cousineau, D. (2018). Adieu coefficient alpha de Cronbach ! J’ai trouvé plus fidèle que toi… [Goodbye Cronbach’s alpha! I found more reliable than you...]. Revue de psychoéducation, 47, 449-460. https://doi.org/10.7202/1054068ar
- Blais, D., Girard, S. et Lemoyne, J. (2020). Contribution des buts d’accomplissement en éducation physique sur la pratique d’activités physiques : comparaison entre classes spéciales et classes ordinaires. Revue canadienne de l’éducation, 43(1), 87-120.
- Bodner, T. E. (2017). Standardized effect sizes for moderated conditional fixed effects with continuous moderator variables. Frontiers in psychology, 8(562), 1-11. https://doi.org/10.3389/fpsyg.2017.00562
- Byrne, B. M. (2012). Structural Equation Modeling with Mplus. Routledge.
- Carden, S. W., Holtzman, N. S. et Strube, M. J. (2017). CAHOST: An Excel workbook for facilitating the Johnson-Neyman technique for two-way interactions in multiple regression. Frontiers in psychology, 8(1293), 1-7. https://doi.org/10.3389/fpsyg.2017.01293
- Clavel, F. (2015). Advanced topics: Plotting better interactions using the Johnson-Neyman technique in Mplus. https://clavelresearch.wordpress.com/2015/03/23/advanced-topics-plotting-better-interactions-using-the-johnson-neyman-technique-in-mplus/
- Cho, E. et Kim, S. (2015). Cronbach’s coefficient alpha: Well known but poorly understood. Organizational research methods, 18(2), 207-230.
- Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2e édition). Lawrence Erlbaum Associates.
- D’Alonzo, K. T. (2004). The Johnson-Neyman procedure as an alternative to ANCOVA. Western journal of nursing research, 26(7), 804-812. https://doi.org/10.1177/0193945904266733
- Fraas, J. W. et Newman, I. (1997, février). The use of the Johnson-Neyman confidence bands and multiple regression models to investigate interaction effects: Important tools for educational researchers and program evaluators [communication orale]. Eastern Educational Research Association, Frankfort sur-le-Main, Allemagne. https://www.learntechlib.org/p/84536/
- Frazier, P. A., Tix, A. P. et Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of counseling psychology, 51(1), 115-134. http://dx.doi.org/10.1037/0022-0167.51.1.115
- Galand, B. (2001). Nature et déterminants des phénomènes de violences en milieu scolaire/Nature and factors of violence in schools. (Thèse de doctorat). Université catholique de Louvain. http://hdl.handle.net/2078.1/5283
- Gillet, N., Rosnet, E. et Vallerand, R. J. (2008). Développement d’une échelle de satisfaction des besoins fondamentaux en contexte sportif. Canadian journal of behavioural science, 40(4), 230-237. http://dx.doi.org/10.1037/a0013201
- Girard, S. (2016). Climat motivationnel en éducation physique et besoins psychologiques : impact sur les buts d’accomplissement, les attitudes et les habitudes des élèves. (Thèse de doctorat). Université de Montréal. http://hdl.handle.net/1866/15903
- Girard, S. et Béland, S. (2017). Analyser l’interaction de variables latentes : une exemplification méthodologique de la méthode d’équations structurelles avec interaction latente. Revue des sciences de l’éducation, 43(3), 28-60. https://doi.org/10.7202/1050972ar
- Harter, S. et Connell, J. P. (1984). A model of children’s achievement and related self-perceptions of competence, control, and motivational orientation. Advances in motivation and achievement, 3, 219-250.
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression‐based approach. Guilford Press.
- Henze, N. (1994). On Mardia’s kurtosis test for multivariate normality. Communications in statistics-theory and methods, 23(4), 1031-1045. https://doi.org/10.1080/03610929408831303
- Hunka, S. (1995). Identifying regions of significance in ANCOVA problems having non-homogeneous regressions. British journal of mathematical and statistical psychology, 48(1), 161-188. https://doi.org/10.1111/j.2044-8317.1995.tb01056.x
- Johnson, P. O. et Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15(4), 349-367. https://doi.org/10.1007/BF02288864
- Johnson, P. O. et Neyman, J. (1936). Tests of certain linear hypotheses and their applications to some educational problems. Statistical research memoirs, 1, 57-93.
- Kirk, R. E. (2013). Experimental design: Procedures for the behavioral sciences. SAGE Publications.
- Klein, A. et Moosbrugger, A. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457-474. https://doi.org/10.1007/BF02296338
- Klein, A. G. et Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate behavioral research, 42(4), 647-673. https://doi.org/10.1080/00273170701710205
- Le Bars, H., Ferron, F., Maïano, C. et Gernigon, C. (2006). Development and validation of the significant others’ goal-involving roles in sport questionnaire. International journal of sport psychology, 37, 359-380.
- Little, T. D., Bovaird, J. A. et Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural equation modeling, 13(4), 497-519. https://doi.org/10.1207/s15328007sem1304_1
- Lorah, J. A. et Wong, Y. J. (2018). Contemporary applications of moderation analysis in counseling psychology. Journal of counseling psychology, 65(5), 629-640. http://dx.doi.org/10.1037/cou0000290
- McNeish, D. (2017). Thanks coefficient alpha, we’ll take it from here. Psychological methods, 23(3), 412-433. https://doi.org/10.1037/met0000144
- MPLUS, STATMODEL. Estimating coefficient omega in Mplus for a 1-factor model with continuous items. https://www.statmodel.com/download/Omega%20coefficient%20in%20Mplus.pdf
- Mueller, R. O. et Hancock, G. R. (2008). Best practices in structural equation modeling. Dans J. W. Osborne (dir.), Best practices in quantitative methods (p. 488-508). SAGE Publications.
- Muthén, B. (2012). Latent variable interactions. http://www.statmodel.com/download/LV%20Interaction.pdf
- Pigache, R. M. et Graham, B. R. (1976). A modification of the Johnson-Neyman technique comparing two regressions, applied to treatment effects dependent on baseline levels. Biological psychology, 4(3), 213-235. https://doi.org/10.1016/0301-0511(76)90006-5
- Potthoff, R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29(3), 241-256. https://doi.org/10.1007/BF02289721
- Preacher, K. J., Curran, P. J. et Bauer, D. J. (2006). Computational tools for probing interaction effects in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of educational & behavioral statistics, 31(4), 437-448. https://doi.org/10.3102/10769986031004437
- Raykov, T. et Marcoulides, G. A. (2019). Thanks coefficient alpha, we still need you! Educational and psychological measurement, 79(1), 200-210.
- Riou, F., Boiché, J., Doron, J., Romain, A.-J., Corrion, K., Ninot, G. et Gernigon, C. (2012). Development and validation of the French achievement goals questionnaire for sport and exercise (FAGQSE). European journal of psychological assessment, 28(4), 313-320. http://dx.doi.org/10.1027/1015-5759/a000112
- Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological bulletin, 88(2), 307-321. http://dx.doi.org/10.1037/0033-2909.88.2.307
- Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moments structures. Dans R. D. H. Heijmans, D. S. G. Pollock et A. Satorra (dir.), Innovations in multivariate statistical analysis: A festschrift for Heinz Neudecker (p. 233-247). Kluwer Academic Publishers.
- Satorra, A. et Bentler, P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75(2), 243-248. http://dx.doi.org/10.1007/s11336-009-9135-y.
- Schoemann, A. M., Miller, P., Pornprasertmanit, S. et Wu, W. (2014). Using Monte Carlo simulations to determine power and sample size for planned missing designs. International journal of behavioral development, 38(5), 471-479. https://doi.org/10.1177/0165025413515169
- Wang, J. et Wang, X. (2012). Structural equation modeling: Applications using Mplus. John Wiley & Sons.
- Wuensch, K. L. (2019). Coefficient omega: Wuensch’s R lessons. http://core.ecu.edu/psyc/wuenschk/R-Lessons/Omega_McDonald.pdf
- Yang, Y. et Green, S. B. (2011). Coefficient alpha: A reliability coefficient for the 21st century? Journal of psychoeducational assessment, 29(4), 377-392.