Résumés
Résumé
Le présent article est une exemplification méthodologique de la méthode LMS (Latent Moderated Structural Equations) disponible dans le logiciel Mplus. Des données recueillies pour étudier la motivation d’adolescentes (n = 434) en éducation physique serviront à présenter la méthodologie à suivre pour évaluer l’interaction de variables latentes dans des modèles d’équations structurelles. Le texte focalise sur la compréhension générale du lecteur quant à l’application de cette méthode et un accent est mis sur la présentation et l’interprétation des résultats. En terminant, les avantages de la méthode LMS sont mis de l’avant et des pistes d’exemplifications méthodologiques sont proposées.
Mots-clés :
- interaction,
- variable latente,
- méthodologie,
- modèle d’équations structurelles,
- éducation physique
Abstract
This article is a methodological exemplification of the LMS method (Latent Moderated Structural Equations) available in Mplus. Data collected to study teenagers’ motivation (n = 434) in physical education will serve to introduce a methodology to assess the interaction of latent variables in structural equation models. The following article focuses on the general understanding of the reader relative to the application of this method as well as on the presentation and interpretation of results. In closing, the benefits of the LMS method are put forward and new methodological exemplification is proposed.
Keywords:
- interaction,
- latent variable,
- methodology,
- structural equation models,
- physical education
Resumen
El presente artículo es una ejemplificación metodológica del método LMS (Latent Moderated Structural Equations), disponible en el program Mplus. Utilizamos datos tomados en un estudio sobre la motivación de los adolescentes (n = 434) en educación física para presentar la metodología a seguir para evaluar la interacción de variables latentes en los modelos de ecuaciones estructurales. Nos centramos en la comprensión general del lector en lo que se refiere a la aplicación de este método y ponemos el acento en la presentación e interpretación de resultados. Para terminar, se subrayan las ventajas del método LMS y se proponen pistas de ejemplificaciones metodológicas.
Palabras clave:
- interacción,
- variable latente,
- metodología,
- modelo de ecuaciones estructurales,
- educación física
Parties annexes
Bibliographie
- Aiken, L. S. and West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, California: SAGE publications.
- Ames, C. (1992). Achievement goals and the classroom motivational climate. In D. H. Schunk et J. L. Meece (eds.). Student perceptions in the classroom (p. 327-348). Hillsdale, New Jersey: Routledge.
- Ames, C. and Archer, J. (1988). Achievement goals in the classroom: students’ learning strategies and motivation processes. Journal of educational psychology, 80(3), 260-267. http://dx.doi.org/10.1037/0022-0663.80.3.260.
- Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173-1182.
- Baumeister, R. F. and Leary, M. R. (1995). The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychological bulletin, 117(3), 497-529. http://dx.doi.org/10.1037/0033-2909.117.3.497.
- Blecharz, J., Luszczynska, A., Tenenbaum, G., Scholz, U. and Cieslak, R. (2014). Self-efficacy moderates but collective efficacy mediates between motivational climate and athletes’ well-being. Applied psychology: Health and well being, 6(3), 280-299. http://dx.doi.org/10.1111/aphw.12028
- Bollen, K. A. (1989), Structural equations with latent variables, New York, New York: John Wiley and Sons, Inc.
- Borsboom, D. (2008). Latent variable theory. Measurement, 6, 25-53.
- Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd edition). New York, New York: Routledge.
- Byrne, B. M. (2012). Structural equation modeling With Mplus. New York, New York: Routledge.
- Cham, H., West, S. G., Ma, Y. and Aiken, L. S. (2012). Estimating latent variable interactions with non-normal observed data: A comparison of four approaches. Multivariate behavioral research, 47(6), 840-876. http://dx.doi.org/10.1080/00273171.2012.732901.
- Ciani, K. D., Middleton, M. J., Summers, J. J. and Sheldon, K. M. (2010). Buffering against performance classroom goal structures: The importance of autonomy support and classroom community. Contemporary educational psychology, 35(1), 88-99. http://dx.doi.org/10.1016/j.cedpsych.2009.11.001.
- Cohen, J. and Cohen, E (1975). Applied multiple regression/correlation analyses for the behavioral sciences. Hillsdale, New Jersey: Erlbaum.
- Cronbach, L. and Snow, R. (1977). Aptitudes and instructional methods: A handbook for research on interactions. New York, New York: Irvington.
- Cury, F., Laurent, E., de Tonnac, A. and Sot, V. (1999, 7-12 juillet). An underexplored aspect of achievement goals theory in sport: Development and predictive validity of the AAASQ. Communication présentée au 10thEuropean congress of sport psychology, Prague, Czech Republic.
- Dawson, J. F. (2014). Moderation in management research: What, why, when and how. Journal of business and psychology, 29, 1-19. http://dx.doi.org/10.1007/s10869-013-9308-7.
- DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological methods, 2(3), 292-307.
- Ekkekakis, P. and Backhouse, S. H. (2014). Physical activity and feeling good. In A. Papaioannou et D. Hackfort (dir.), Routledge companion to sport and exercise psychology: Global perspective and fundamental concepts. New York, New York: Taylor and Francis Group.
- Elliot, A. J. and Church, M. A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of personality and social psychology, 72(1), 218-232. http://dx.doi.org/10.1037/0022-3514.72.1.218.
- Fox, K. R. and Lindwall, M. (2014). Self-esteem and self-perceptions in sport and exercise. In A. Papaioannou et D. Hackfort (dir.), Routledge companion to sport and exercise psychology: Global perspectives and fundamental concepts (p. 34-48). New York, New York: Taylor and Francis Group.
- Galand, B. (2001). Nature et déterminants des phénomènes de violences en milieu scolaire/Nature and factors of violence in schools. (Thèse de doctorat non publiée), Académie Louvain, Belgique.
- Gillet, N., Rosnet, E. et Vallerand, R. J. (2008). Développement d’une échelle de satisfaction des besoins fondamentaux en contexte sportif. Canadian journal of behavioural science, 40(4), 230-237. http://dx.doi.org/10.1037/a0013201.
- Girard, S. (2016). Climat motivationnel en éducation physique et besoins psychologiques : impact sur les buts d’accomplissement, les attitudes et les habitudes des élèves. (Thèse de doctorat non publiée), Université de Montréal, Canada.
- Girard, S., Chouinard, R. et St-Amand, J. (2015). Climat motivationnel et buts de maitrise en éducation physique : rôle modérateur du sexe et du sentiment de compétence. Revue phénEPS /PHEnex Journal, 7(1), 1-20.
- Harter, S. and Connell, J. P. (1984). A model of children’s achievement and related self-perceptions of competence, control, and motivational orientation. Advances in motivation and achievement, 3, 219-250.
- Hu, L.-T. and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling, 6(1), 1-55. http://dx.doi.org/10.1080/10705519909540118.
- Hwang, H., Ho, M.-H. R. and Lee, J. (2010). Generalized structured component analysis with latent interactions. Psychometrika, 75(2), 228-242. http://dx.doi.org/10.1007/s11336-0109157-5.
- Hwang, H. and Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81-99.
- Jöreskog, K. G. (1970). A general method for analysis of covarriance structures. Biometrika, 57, 239-251.
- Jöreskog, K. G. and Sörbom, D. (1996). LISREL 8: User's reference guide. Chicago, Illinois: Scientific software international.
- Kelava, A., Werner, C. S., Schermelleh-Engel, K., Moosbrugger, H., Zapf, D., Ma, Y., Cham, H., Aiken, L. S. and West, S. G. (2011). Advanced nonlinear latent variable modeling: Distribution analytic LMS and QML estimators of interaction and quadratic effects. Structural equation modeling: A multidisciplinary journal, 18(3), 465-491. http://dx.doi.org/10.1080/10705511.2011.582408.
- Kenny, D. A. and Judd, C.M. (1984). Estimating the non-linear and interactive effects of latent variables. Psychological bulletin, 96, 201-210.
- Klein, A. G. and Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457-474.
- Klein, A. G. and Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate behavioral research, 42, 647-663.
- Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd edition). New York, New York: Guilford Press.
- Le Bars, H., Ferron, F., Maïano, C. and Gernigon, C. (2006). Development and validation of the significant others' goal-involving roles in sport questionnaire. International journal of sport psychology, 37, 359-380.
- Lehmann, E. L. (1999). Elements of large-sample theory. New York, New York: Springer science and business media.
- Lin, G.-C., Wen, Z., Marsh, H. and Lin, H.-S. (2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. Structural equation modeling: A multidisciplinary journal, 17(3), 374-391. http://dx.doi.org/10.1080/10705511.2010.488999.
- Marden, J. and Muyot ,M. E. T. (1995). Rank tests for main and interaction effects in analysis of variance. Journal of the american statistical association, 90(432), 1388-1398. doi:10.2307/2291530
- Marsh, H. W., Wen, Z., Nagengast, B. and Hau, K. T. (2012). Structural equation models of latent interaction. In R. H. Hoyle (ed.), Handbook of structural equation modeling (p. 436-458). New York, New York: Guilford.
- Matsueda, R. L. (2012). Key advances in the history of structural equation modeling. In R. H. Hoyle (ed.), Handbook of structural equation modeling (p. 17-43). New York, New York: Guilford.
- Maslowsky, J., Jager, J. and Hemken, D. (2015). Estimating and interpreting latent variable interactions: A tutorial for applying the latent moderated structural equations method. International journal of behavioral development, 39(1), 87-96. http://dx.doi.org/10.1177/0165025414552301.
- Mueller, R. O. and Hancock, G. R. (2008). Best practices in structural equation modeling. In J. W. Osborne (ed.), Best practices in quantitative methods (p. 488-508). Thousands Oaks, California: SAGE publications.
- Muthén, B. (2012). Latent variable interactions. Récupéré du site : http://www.statmodel.com/download/LV%20Interaction.pdf
- Muthén, L. K. and Muthén, B. O. (1998-2012). Mplus User’s Guide (7th edition). Los Angeles, California: Muthén and Muthén.
- Papaioannou, A., Zourbanos, N., Krommidas, C. and Ampatzoglou, G. (2012). The place of achievement goals in the social context of sport: A comparison of Nicholls' and Elliot’s models. In G. C. Roberts et D. C. Treasure (eds.), Advances in motivation in sports and exercise (3rd edition, p. 59-90). Champaign, Illinois : Human Kinetics.
- Perry, J. L., Nicholls, A. R., Clough, P. J. and Crust, L. (2015). Assessing model fit: Caveats and recommendations for confirmatory factor analysis and exploratory structural equation modeling. Measurement in physical education and exercise science, 19(1), 12-21. http://dx.doi.org/10.1080/1091367X.2014.952370.
- Revue des sciences de l’éducation (2015). Exemplification méthodologique. Récupéré du site : http://www.rse.umontreal.ca/EXEMPLIFICATION_METHODOLOGIQUE_2015_03_25.pdf
- Riou, F., Boiché, J., Doron, J., Romain, A.-J., Corrion, K., Ninot, G., d’Arripe-Longueville, F. and Gernigon, C. (2012). Development and validation of the French achievement goals questionnaire for sport and exercise (FAGQSE). European journal of psychological assessment, 28(4), 313-320. http://dx.doi.org/10.1027/1015-5759/a000112.
- Ryan, R. M. and Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social-development, and well-being. American psychologist, 55(1), 68-78. http://dx.doi.org/10.1037110003-066X.55.1.68.
- Ryan, R. M. and Deci, E. L. (2002). An overview of self-determination theory: An organismic-dialectical perspective. In E. L. Deci and R. M. Ryan (eds.), Handbook of self-determination research (p. 3-33). Rochester, New York: University of Rochester Press.
- Sarrazin, P., Tessier, D. et Trouilloud, D. (2006). Climat motivationnel instauré par l’enseignant et implication des élèves en classe : l’état des recherches. Revue française de pédagogie, 157, 147-177.
- Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moments structures. In R. D. H. Heijmans, D. S. G. Pollock and A. Satorra (dir.), Innovations in multivariate statistical analysis: A festschrift for Heinz Neudecker (p. 233-247). London, United Kingdom: Kluwer Academic Publishers.
- Satorra, A.and Bentler, P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75(2), 243-248. http://dx.doi.org/10.1007/s11336-009-9135-y.
- Schumacker, R. E. and Marcoulides, G. A. (1998). Interaction and nonlinear effects in structural equation modeling. Mahwah, New Jersey: Lawrence Erlbaum Associates.
- Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics (5th edition). Boston, Massachusetts: Pearson Education.
- Tian, L., Han, M. and Huebner, E. S. (2014). Preliminary development of the adolescent students’ basic psychological needs at school scale. Journal of adolescence, 37(3), 257-267. http://dx.doi.org/10.1016/j.adolescence.2014.01.005.
- Trautwein, U., Marsh, H. W., Nagengast, B., Lüdtke, O., Nagy, G. and Jonkmann, K. (2012). Probing for the multiplicative term in modern expectancy–value theory: A latent interaction modeling study. Journal of educational psychology, 104(3), 763-777. http://dx.doi.org/10.1037/a0027470.
- Tucker, L. R. and Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.
- Vlachopoulos, S. P., Ntoumanis, N. and Smith, A. L. (2010). The basic psychological needs in exercise scale: Translation and evidence for cross-cultural validity. International journal of sport and exercise psychology, 8(4), 394-412. http://dx.doi.org/10.1080/1612197x.2010.9671960.
- Wang, J. and Wang, X. (2012). Structural equation modeling: Applications using Mplus. Chichester, United Kingdom : Wiley.
- West, S. G., Finch, J. F. and Curran, P. J. (1995). Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, California: SAGE publications.
- Wu, Y., Wen, Z., Marsh, H. W. and Hau, K.-T. (2013). A comparison of strategies for forming product indicators for unequal numbers of items in structural equation models of latent interactions. Structural equation modeling: A multidisciplinary journal, 20(4), 551-567. http://dx.doi.org/10.1080/10705511.2013.824772.
- Zarrett, N., Sorensen, C. and Cook, B. S. (2015). Physical and social-motivational contextual correlates of youth physical activity in underresourced afterschool programs. Health education and behavior, 42(4), 518-529. http://dx.doi.org/10.1177/1090198114564502.