Résumés
Résumé
Cet article élabore une nouvelle approche pédagogique pour étudier les intervalles harmoniques aux niveaux collégial et universitaire. Sont d’abord passés en revue les principaux mécanismes responsables de la perception des intervalles harmoniques, notamment la perception des hauteurs sonores, la capacité à discriminer les notes jouées simultanément, la perception des battements et l’harmonicité. En s’appuyant sur les mécanismes d’apprentissage perceptuel de Goldstone et Byrge (2015), différentes stratégies sont ensuite discutées pour isoler, stimuler et renforcer la perception des principaux attributs sonores nécessaire à la reconnaissance auditive des intervalles harmoniques. Une démarche d’enseignement intégrée est finalement proposée pour la salle de classe.
Mots-clés :
- apprentissage perceptuel,
- éducation musicale,
- formation auditive,
- intervalles harmoniques,
- pédagogie musicale
Abstract
This paper develops a new pedagogical approach to the study of harmonic intervals at the college and university levels. Mechanisms responsible for the perception of harmonic intervals, in particular the perception of tone, the ability to segregate notes played simultaneously, perception of beating and harmonicity, are first reviewed. Based on the perceptual learning mechanisms of Goldstone and Byrge (2015), different strategies to isolate, stimulate and reinforce the perception of the main sound attributes necessary for the auditory recognition of harmonic intervals are discussed. Lastly, an integrated approach to the teaching of harmonic intervals is suggested for the classroom.
Keywords:
- ear training,
- harmonic intervals,
- music education,
- music pedagogy,
- perceptual learning
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Note biographique
Titulaire d’un baccalauréat en musique de l’Université du Québec à Montréal et d’une maîtrise en musique de l’Université Laval, Guillaume Fournier enseigne la formation auditive et l’analyse musicale au Cégep de Saint-Laurent. Durant sa carrière, il s’est distingué en de multiples occasions par son talent musical, sa passion, sa rigueur et son implication syndicale. Récipiendaire de plusieurs bourses d’excellence, notamment du crsh, du frqsc et de l’oicrm, il poursuit des études de doctorat à l’Université Laval. Ses intérêts de recherche portent sur le rôle des stratégies cognitives dans l’apprentissage de la formation auditive. Il est également membre du laboratoire de recherche sur la formation auditive et la didactique instrumentale (LaRFADI, http://larfadi.oicrm.org).
Bibliographie
- Balzano, Gerald, J., et Barry W. Liesch (1982), « The Role of Chroma and Scalestep in the Recognition of Musical Intervals In and Out of Context », Psychomusicology. A Journal of Research in Music Cognition, vol. 2, no 2, p. 3-31.
- Bao, Min., et al. (2010), « Perceptual Learning Increases the Strength of the Earliest Signals in Visual Cortex », The Journal of Neuroscience, vol. 30, no 45, p. 15080-15084.
- Bendor, Daniel, et Xiaoqin Wang (2005), « The Neuronal Representation of Pitch in Primate Auditory Cortex », Nature, vol. 436, no 7054, p. 1161-1165.
- Bernstein, Joshua G. W., et Andrew J. Oxenham (2008), « Harmonic Segregation Through Mistuning Can Improve Fundamental Frequency Discrimination », The Journal of the Acoustical Society of America, vol. 124, no 3, p. 1653-1667.
- Bidelman, Gavin M., et Ananthanarayan Krishnan (2009), « Neural Correlates of Consonance, Dissonance, and the Hierarchy of Musical Pitch in the Human Brainstem », The Journal of Neuroscience, vol. 29, no 42, p. 13165-13171.
- Bowling, Daniel L., et Dale Purves (2015), « A Biological Rationale for Musical Consonance », Proceedings of the National Academy of Sciences, vol. 112, no 36, p. 11155-11160.
- Bosnyak, Daniel J., Eaton, Robert A., et Larry E. Roberts (2004), « Distributed Auditory Cortical Representations Are Modified When Non-musicians Are Trained at Pitch Discrimination with 40 Hz Amplitude Modulated Tones », Cerebral Cortex, vol. 14, no 10, p. 1088-1099.
- Carcagno, Samuelle, et Christopher J. Plack (2011), « Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task », Journal of the Association for Research in Otolaryngology, vol. 12, no 1, p. 89-100.
- Chouard, Claude-Henri (2001), L’oreille musicienne. Les chemins de la musique de l’oreille au cerveau, Paris, Gallimard.
- Costa, Marco, Bitti, Pio E. R., et Luisa Bonfiglioli (2000), « Psychological Connotations of Harmonic Musical Intervals », Psychology of Music, vol. 28, no 1, p. 4-22.
- Cousineau, Marion, McDermott, Josh H., et Isabelle Peretz (2012), « The Basis of Musical Consonance as Revealed by Congenital Amusia », Proceedings of the National Academy of Sciences, vol. 109, no 48, p. 19858-19863.
- Demany, Laurent, et Christophe Ramos (2005), « On the Binding of Successive Sounds. Perceiving Shifts in Nonperceived Pitches », Journal of the Acoustical Society of America, vol. 117, no 2, p. 833-841.
- Demany, Laurent, et Catherine Semal (2002), « Learning to Perceive Pitch Differences », The Journal of the Acoustical Society of America, vol. 111, no 3, p. 1377-1388.
- Deutch, Diana (2013), « Grouping Mechanisms in Music », dans Diana Deutch (dir.), The Psychology of Music, 3e édition, London, Elsevier, p. 183-248.
- Furmanski, Christopher S., Schluppeck, Denis, et Stephen A. Engel (2004), « Learning Strengthens the Response of Primary Visual Cortex to Simple Patterns », Current Biology, vol. 14, no 7, p. 573-578.
- Garner, Wendell R. (1976), « Interaction of Stimulus Dimensions in Concept and Choice Processes », Cognitive Psychology, vol. 8, no 1, p. 98-123.
- Goldstein, E. Bruce (2010), Sensation and Perception, 8e édition, Belmont, Wadsworth Cengage Learning.
- Golstone, Robert L. (1994), « Influences of Categorization on Perceptual Discrimination », Journal of Experimental Psychology, vol. 123, no 2, p. 178-200.
- Goldstone, Robert L., et Lisa Byrge (2015), « Perceptual Learning », dans Mohen Matthen (dir.), The Oxford Handbook of Philosophy of Perception, Oxford, Oxford University Press.
- Goldstone, Robert L., et Andrew T. Hendrickson (2010), « Categorical Perception », Wiley Interdisciplinary Reviews. Cognitive Science, vol. 1, no 1, p. 69-78.
- Goldstone, Robert L., et Mark Steyvers (2001), « The Sensitization and Differentiation of Dimensions During Category Learning », Journal of Experimental Psychology. General, vol. 130, no 1, p. 116-139.
- Huron, David (1989), « Voice Denumerability in Polyphonic Music of Homogeneous Timbres », Music Perception, vol. 6, no 4, p. 361-382.
- Kameoka, Akio, et Mamoru Kuriyagawa (1969), « Consonance Theory Part II. Consonance of Complex Tones and its Calculation Method », Journal of the Acoustical Society of America, vol. 45, p. 1460-1469.
- Karpinski, Gary S. (2000), Aural Skills Acquisition. The Development of Listening, Reading, and Performing Skills in College-level Musicians, New York, Oxford University Press.
- Keislar, Douglas F. (1989), « Psychoacoustic Factors in Musical Intonation. Beats, Interval Tuning, and Inharmonicity », Thèse de doctorat, Stanford University.
- Killam, Rosemary N., Lorton Jr., Paul V., et Earl D. Schubert (1975), « Interval Recognition. Identification of Harmonic and Melodic Intervals », Journal of Music Theory, vol. 19, no 2, p. 212-234.
- Langner, Gerald, et Michael Ochse (2006), « The Neural Basis of Pitch and Harmony in the Auditory System », Musicae Scientiae, vol. 10, no 1, p. 185-208.
- Lee, Kyung M. (2011), « Neural Representation of Musical Intervals in the Human Brainstem », Thèse de doctorat, Northwestern University.
- Lee, Kyung M., et al. (2009), « Selective Subcortical Enhancement of Musical Intervals in Musicians », The Journal of Neuroscience, vol. 29, no 18, p. 5832-5840.
- Loh, Christian S. (2007), « Choice and Effects of Instrument Sound in Aural Training », Music Education Research, vol. 9, no 1, p. 129-143.
- Maher, Timothy F. (1976), « “Need for Resolution”. Ratings for Harmonic Musical Intervals. A Comparison Between Indians and Canadians », Journal of Cross-Cultural Psychology, vol. 7, no 3, p. 259-276.
- Maher, Timothy F. (1980), « A Rigorous Test of the Proposition That Musical Intervals Have Different Psychological Effects », The American Journal of Psychology, vol. 93, no 2, p. 309-327.
- McDermott, Josh H., Lehr, Andriana J., et Andrew J. Oxenham (2010), « Individual Differences Reveal the Basis of Consonance », Current Biology, vol. 20, no 11, p. 1035-1041.
- McDermott, Josh. H., et Andrew J. Oxenham (2008), « Music Perception, Pitch, and the Auditory System », Current Opinion in Neurobiology, vol. 18, no 4, p. 452-463.
- McLachlan, Neil, et al. (2013), « Consonance and Pitch », Journal of Experimental Psychology. General, vol. 142, no 4, p. 1142-1158.
- Micheyl, Christophe, et Andrew J. Oxenham (2010), « Pitch, Harmonicity and Concurrent Sound Segregation. Psychoacoustical and Neurophysiological Findings », Hearing Research, vol. 266, no 1, p. 36-51.
- Miyazono, Hiromitsu, Glasberg, Brian R., et Brian C. J. Moore (2010), « Perceptual Learning of Fundamental Frequency Discrimination. Effects of Fundamental Frequency, Harmonic Number, and Component Phase », Journal of the Acoustical Society of America, vol. 128, no 6, p. 3649-3657.
- Musacchia, Gabriella, et al. (2007), « Musicians Have Enhanced Subcortical Auditory and Audiovisual Processing of Speech and Music », Proceedings of the National Academy of Sciences, vol. 104, no 40, p. 15894-15898.
- Needham, Amy, Dueker, Gwenden, et Gregory Lockhead (2005), « Infants’ Formation and Use of Categories to Segregate Objects », Cognition, vol. 94, no 3, p. 215-240.
- Oelmann, Hella, et Bruno Laeng (2009), « The Emotional Meaning of Harmonic Intervals », Cognitive Processing, vol. 10, no 2, p. 113-131.
- Oxenham, Andrew J. (2013), « The Perception of Musical Tones », dans Diana Deutch (dir.), The Psychology of Music, 3e édition, London, Elsevier, p. 1-33.
- Pantev, Christo, et al. (1998), « Increased Auditory Cortical Representation in Musicians », Nature, vol. 392, no 6678, p. 811-814.
- Plomp, Reinier, et Willem J. M. Levelt (1965), « Tonal Consonances and Critical Bandwidth », Journal of the Acoustical Society of America, vol. 38, no 4, p. 548-560.
- Ponsati, Imma, et al. (2016), « Students’ Performance When Aurally Identifying Musical Harmonic Intervals. Experimentation of a Teaching Innovation Proposal », International Journal of Music Education, vol. 34, no 4, p. 445-458.
- Quinn, Paul C., et Ramesh R. Bhatt (2006), « Are Some Gestalt Principles Deployed More Readily Than Others During Early Development? The Case of Lightness Versus Form Similarity », Journal of Experimental Psychology. Human Perception and Performance, vol. 32, no 5, p. 1221-1230.
- Roederer, Juan G. (2008), The Physics and Psychophysics of Music. An Introduction, 4e édition, New York, Springer.
- Rogers, Michael (2004), Teaching Approaches in Music Theory. An Overview of Pedagogical Philosophies, Carbondale, Southern Illinois University Press.
- Samplaski, Art (2005), « Interval and Interval class Similarity. Results of a Confusion Study », Psychomusicology. A Journal of Research in Music Cognition, vol. 19, no 1, p. 59-74.
- Schellenberg, E. Glenn, et Laurel J. Trainor (1996), « Sensory Consonance and the Perceptual Similarity of Complex-tone Harmonic Intervals. Tests of Adult and Infant Listeners », Journal of the Acoustical Society of America, vol. 100, no 5, p. 3321-3328.
- Schön, Daniele, et al. (2005), « Sensory Consonance. An erp Study », Music Perception, vol. 23, no 2, p. 105-117.
- Schneider, Peter, et al. (2002), « Morphology of Heschl’s Gyrus Reflects Enhanced Activation in the Auditory Cortex of Musicians », Nature Neuroscience, vol. 5, no 7, p. 688-694.
- Smith, J. David, et al. (1994), « What Child is This? What Interval Was That? Familiar Tunes and Music Perception in Nnovice Listeners », Cognition, vol. 52, no 1, p. 23-54.
- Sowden, Paul T., Davies, Ian R. L., et Penny Roling (2000), « Perceptual Learning of the Detection of Features in X-ray Images. A Functional Role for Improvements in Adults’ Visual Sensitivity? », Journal of Experimental Psychology. Human Perception and Performance, vol. 26, no 1, p. 379-390.
- Stainsby, Thomas, et Ian Cross (2009), « The Perception of Pitch », dans Susan Hallam, Ian Cross et Michael Thaut (dir.), The Oxford Handbook of Music Psychology, Oxford, Oxford University Press, p. 47-58.
- Stolzenburg, Frieder (2015), « Harmony Perception by Periodicity Detection », Journal of Mathematics and Music, vol. 9, no 3, p. 215-238.
- Tanaka, James W., et Tim Curran (2001), « A Neural Basis for Expert Object Recognition », Psychological Science, vol. 12, no 1, p. 43-47.
- Thompson, William F. (2013), « Intervals and Scales », dans Diana Deutch (dir.), The Psychology of Music, 3e édition, London, Elsevier, p. 107-140.
- Tramo, Mark J., et al. (2001), « Neurobiological Foundations For the Theory of Harmony in Western Tonal Music », Annals of the New York Academy of Sciences, vol. 930, no 1, p. 92-116.
- Trainor, Laurel J., et Erin E. Hannon (2013), « Musical Development », dans Diana Deutch (dir.), The Psychology of Music, 3e édition, London, Elsevier, p. 423-497.
- Watanabe, Takeo, Nanez, José E., et Yuka Sasaki (2011), « Perceptual Learning Without Perception », Nature, vol. 413, p. 844-848.
- Weinberger, Norman M. (1993), « Learning-induced Changes of Auditory Receptive Fields », Current Opinion in Neurobiology, vol. 3, no 4, p. 570-577.
- Willems, Edgar, et Jacques Chapuis (1996), Canciones de intervalos y acordes, Barcelone, Editions Pro Musica.
- Wuthrich, Carol E., et Thomas Tunks (1989), « The Influence of Presentation Time Asynchrony on Music Interval Perception », Psychomusicology. A Journal of Research in Music Cognition, vol. 8, no 1, p. 31-46.
- Zarate, Jean M., Ritson, Caroline R., et David Poeppel (2012), « Pitch-interval Discrimination and Musical Expertise. Is the Semitone a Perceptual Boundary? », Journal of Acoustical Society of America, vol. 132, no 2, p. 984-993.
- Zatorre, Robert J. (1983), « Category-boundary Effects and Speeded Sorting with a Harmonic Musical-interval Continuum. Evidence for Dual Processing », Journal of Experimental Psychology. Human Perception & Performance, vol. 9, no 5, p. 739-752.