Résumés
Abstract
Chemical composition, antioxidant, and allelopathic activities of extract from leaves and cones of Tunisian Cupressus arizonica were evaluated. The values of essential oils (EO) yields were 0.18% for leaves and 1.07% for cones. Following GC/MS analysis of C. arizonica leaves and cones, the major compounds identified in leaves EO were umbellulone (19.4%) and α-pinene (10.75%) while the EO of the cones was characterized by its richness with α-pinene (81.3%). In comparison with different extracts, the highest total antioxidant capacity was registered with ethanolic extracts of leaves followed by that of cones. However, the antioxidant activity was stronger with ethanolic extract of leaves than that of cones using both DPPH or ABTS in free radical scavenging activity assays. Results of allelopathic activity showed that the germination reduction depends on the nature of extract and their concentration level. All extracts of C. arizonica decreased the germination of Sinapis arvensis compared to the control. The EO from leaves and cones had the greatest reduction on germination and the strongest growth inhibition followed by the ethanolic extract then the aqueous extract. Results of this study can lead to identification of new phytotoxic compounds in extracts of C. arizonica useful in controlling weeds.
Keywords:
- Cupressus arizonica,
- essential oil,
- DPPH,
- ABTS,
- Sinapis arvensis,
- allelopathic activity
Résumé
La composition chimique, les activités antioxydantes et allélopathiques de l’extrait de feuilles et de cônes de Cupressus arizonica de Tunisie ont été évaluées. Les valeurs des rendements en huiles essentielles (HE) étaient de 0,18 % pour les feuilles et de 1,07 % pour les cônes. Grâce à l’analyse par GC/MS des feuilles et des cônes de C. arizonica, les principaux composés identifiés dans l’HE des feuilles étaient l’umbellulone (19,4 %) et l’α-pinène (10,75 %) tandis que l’HE des cônes était caractérisée par sa richesse en α-pinène (81,3 %). Par rapport à différents extraits, la capacité antioxydante totale la plus élevée a été enregistrée avec les extraits éthanoliques des feuilles, suivie par celle des cônes. Cependant, l’activité antioxydante était plus forte avec l’extrait éthanolique des feuilles que celle des cônes en utilisant DPPH ou ABTS dans les deux tests d’activité de piégeage des radicaux libres. Les résultats de l’activité allélopathique ont montré que la réduction de la germination dépend de la nature des extraits et de leurs niveaux de concentration. Tous les extraits de C. arizonica étaient capables de diminuer la germination de Sinapis arvensis par rapport au témoin. Les HE des feuilles et des cônes avaient un impact plus important sur la réduction de la germination et l’inhibition de la croissance, suivi par l’extrait éthanolique puis par l’extrait aqueux. Les résultats de cette étude peuvent conduire à identifier de nouveaux composés phytotoxiques dans des extraits de C. arizonica utiles pour la lutte contre les mauvaises herbes.
Mots-clés :
- Cupressusarizonica,
- huile essentielle,
- DPPH,
- ABTS,
- Sinapis arvensis,
- activité allélopathique
Parties annexes
REFERENCES
- Abd-El Gawad, A.M., A.I. Elshamy, Y.A. El-Amier, A.E.-N.G. El Gendy, S.A. Al-Barati, B.A. Dar, S.L. Al-Rowaily, and A.M. Assaeed. 2020. Chemical composition variations, allelopathic, and antioxidant activities of Symphyotrichum squamatum (Spreng.) Nesom essential oils growing in heterogeneous habitats. Arab. J. Chem. 13: 4237-4245.
- Adams, G.C., M. Catal, L. Trummer, E.M. Hansen, P. Reeser, and J.J. Worrall. 2008. Phytophthora alni subsp. uniformis found in Alaska beneath thinleaf alders. Plant Health Prog. 9: 38-40.
- Amri, I., L. Hamrouni, M. Hanana, B. Jamoussi, and K. Lebdi. 2014. Essential oils as biological alternatives to protect date palm (Phoenix dactylifera L.) against Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Chilean J. Agric. Res. 74: 273-279.
- Amri, I., M. Hanana, B. Jamoussi, and L. Hamrouni. 2017. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: chemical composition and study of their herbicidal potential. Arab. J. Chem. 10: S3877-S3882.
- Anka, L., H. Rammal, A. Kobeissi, and H.B. Saab. 2020. Chemical composition and biological potentials of Lebanese Cupressus sempervirens L. leaves extracts. J. Med. Plant Res. 14: 292-299.
- Barratt, B.I.P., V.C. Moran, F. Bigler, and J.C. van Lenteren. 2017. The status of biological control and recommendations for improving uptake for the future. BioControl 63: 155-167. https://doi.org/10.1007/s10526-017-9831-y
- Ben Nouri, A., W. Dhifi, S. Bellili, H. Ghazghazi, C. Aouadhi, A. Chérif, M. Hammami, and W. Mnif. 2015. Chemical composition, antioxidant potential, and antibacterial activity of essential oil cones of Tunisian Cupressus sempervirens. J. Chem. 2015: Article 538929.
- Berwind, M.F., A. Kamas, and C. Eberl. 2018. A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv. Eng. Mater. 20: Article 1800771.
- Bouksaim, H., B. Satrani, M. Ghanmi, A. Chaouch, and M. Fadli. 2018. Étude chimique et évaluation de l’activité antibactérienne et antifongique des huiles essentielles de Cupressus arizonica Greene cultivée au Maroc. Eur. J. Sci. Res. 148: 491-500.
- Butcko, V.M., and R.J. Jensen. 2002. Evidence of tissue-specific allelopathic activity in Euthamia graminifolia and Solidago canadensis (Asteraceae). Am. Midl. Nat. 148: 253-262. doi:10.1674/0003-0031(2002)148[0253:EOTSAA]2.0.CO;2
- Cheng, F., and Z. Cheng. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6: Article 1020.
- Chung, I.M., J.K. Ahn, and S.J. Yun. 2001. Assessment of allelopathic potential of barnyard grass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars. Crop Prot. 20: 921-928. doi:10.1016/S0261-2194(01)00046-1
- Council of Europe. 2004. European pharmacopoeia. Council of Europe, Strasbourg, France. 300 pp.
- Dayan, F.E., J.G. Romagni, and S.O. Duke. 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26: 2079-2094.
- Dewanto, V., X. Wu, and R.H. Liu. 2002. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50: 4959-4964.
- Elansary, H.O., M.Z.M. Salem, N.A. Ashmawy, and M.M. Yacout. 2012. Chemical composition, antibacterial and antioxidant activities of leaves essential oils from Syzygiumcumini L., Cupressuss empervirens L. and Lantana camara L. from Egypt. J. Agric. Sci. 4: 144-152. doi:10.5539/jas.v4n 10p144
- Emami, E., R.F. de Souza, M. Kabawat, and J. S. Feine. 2013. The impact of edentulism on oral and general health. Int. J. Dent. 2013: Article 498305.
- Emami, S.A., M. Fakhrjafary, M. Tafaghodi, and M.K. Hassanzadeh. 2010. Chemical composition and antioxidant activities of the essential oils of different parts of Cupressus arizonica Greene. J. Essent. Oil Res. 22: 193-199.
- Emami, S.A., S.Z.T. Rabe, M. Iranshahi, A. Ahi, and M. Mahmoudi. 2010. Sesquiterpene lactone fraction from Artemisia khorassanica inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression through the inactivation of NF-κB. Immunopharmacol. Immunotoxicol. 32: 688-695.
- Flamini, R. 2003. Mass spectrometry in grape and wine chemistry. Part I: Polyphenols. Mass Spectrom. Rev. 22: 218-250.
- Fralish, J.S., and S.B. Franklin. 2002. Taxonomy and ecology of woody plants in North American forests: (excluding Mexico and Subtropical Florida). John Wiley & Sons, New York, NY, USA. 624 pp.
- Habermann, E., V. De Cassia Pereira, M. Imatomi, F.C. Pontes, and S.C.J. Gualtieri. 2017. In vitro herbicide activity of crude and fractionated leaf extracts of Blepharocalyx salicifolius (Myrtaceae). Braz. J. Bot. 40: 33-40.
- Hagerman, A.E., K.M. Riedl, G.A. Jones, K.N. Sovik, N.T. Ritchard, P.W. Hartzfeld, and T.L. Riechel. 1998. High molecular weight plant polyphenolics (tannins) as biological anti-oxidants. J. Agric. Food Chem. 46: 1887-1892.
- Hatano, T., H. Kagawa, T. Yasuhara, and T. Okuda. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36: 2090-2097.
- Heap, I., and S.O. Duke. 2018. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 74: 1040-1049.
- Jabran, K. 2017. Manipulation of allelopathic crops for weed control. Springer Nature, Cham, Switzerland. 100 pp.
- Kaldi. S, F. Chaouachi, R. Ksouri, and M. El Gazzah. 2013. Polyphenolic composition in different organs of Tunisia populations of Cynara cardunculus L. and their antioxidant activity. J. Food Nutr. Res. 1: 1-6.
- Khammassi, M., S. Loupassaki, H. Tazarki, F. Mezni, A. Slama, N. Tlili, Y. Zaouali, H. Mighri, B. Jamoussi, and A. Khaldi. 2018. Variation in essential oil composition and biological activities of Foeniculum vulgare Mill. populations growing widely in Tunisia. J. Food. Biochem. 42: Article e12532.
- Kim, J.-K., J.-H. Noh, S.-E. Lee, J.-S. Choi, H.-S. Suh, H.-Y. Chung, Y.-O. Song, and W.-C. Choi. 2002. The first total synthesis of 2,3,6-tribromo-4,5- dihydroxybenzyl methyl ether (TDB) and its antioxidant activity. Bull. Korean Chem. Soc. 23: 661-662.
- Limam, H., Y. Ezzine, S. Tammar, N. Ksibi, S. Selmi, G. Del Re, R. Ksouri, and K. Msaada. 2021. Phenolic composition and antioxidant activities of thirteen Eucalyptus species cultivated in North East of Tunisia. Plant Biosyst. 155: 587-597.
- Mannai, Y., O. Ezzine, S. Dhahri, M.L.B. Jamâa, and L. Hamrouni. 2021. Insecticidal activity of essential oils of Cupressus arizonica Greene and C. sempervirens L. on Tortrix viridana (Lepidotera, Tortricidae). World J. Biol. Biotechnol. 6: Article 1.
- Mirmostafaee, S., M. Azizi, and Y. Fujii. 2020. Study of allele-pathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. Agronomy 10: Article 163. doi:10.3390/agro nomy10020163
- Omezzine, F., A. Ladhari, and R. Haouala. 2014. Physiological and biochemical mechanisms of allelochemicals in aqueous extracts of diploid and mixoploid Trigonellafoenum-graecum L. S. Afr. J. Bot. 93: 167-178. doi:10.1016/j.sajb. 2014.04.009
- Popovici, J., V. Walker, C. Bertrand, F. Bellvert, M.P. Fernandez, and G. Comte. 2011. Strain specificity in the Myricaceae-Frankia symbiosis is correlated to plant root phenolics. Funct. Plant Biol. 38: 682-689.
- Prieto, P., M. Pineda, and M. Aguilar. 1999. Spectropho-tometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269: 337-341.
- Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. doi:10.1016/S0891-5849(98)00315-3
- San Miguel-Chávez, R. 2017. Phenolic antioxidant capacity: a review of the state of the art. Pages 59-74 in M. Soto-Hernandez, M. Palma-Tenango, and M. del Rosario Garcia-Mateos (eds.), Phenolic compounds: biological activity. InTech, Rijeka, Croatia.
- Sedaghat, M.M., A.S. Dehkordi, M. Khanavi, M.R. Abai, F. Mohtarami, and H. Vatandoost. 2011. Chemical composition and larvicidal activity of essential oil of Cupressus arizonica E.L. Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Pharmacogn. Res. 3: 135-139. doi:10.4103%2F0974-8490.81962
- Sepahpour, S., J. Selamat, M.Y. Abdul Manap, A. Khatib, and A.F. Abdull Razis. 2018. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 23: Article 402.
- Shafaie, F.S., M. Mirghafourvand, and J. Amirzehni. 2019. Predictors of quality of life in patients with breast cancer. Indian. J. Palliat. Care 25:73-78.
- Sharopov, F.S., M. Wink, and W.N. Setzer. 2015. Radical scavenging and antioxidant activities of essential oil components – an experimental and computational inves-tigation. Nat. Prod. Commun. 10: 153-156.
- Souihi, M., R. Ben Ayed, I. Trabelsi, M. Khammassi, N. Ben Brahim, and M. Annabi. 2020. Plant extract valorization of Melissa officinalis L. for agroindustrial purposes through their biochemical properties and biological activities. J. Chem. 2020: Article 9728093.
- Stephen, D.P., and K.B. Ayalur. 2017. Phycoremediation of phenolic effluent of a coal gasification plant by Chlorella pyrenoidosa. Process Saf. Environ. Prot. 111: 31-39.
- Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50: 425-431. doi:10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2