Résumés
Abstract
Metabolomics is one of the most eminent and newly emerging omic sciences. It is a powerful tool to study metabolic changes that occur in an organism. Plants produce a wide range of metabolites and the study of these metabolites can answer a number of questions that arise in the minds of researchers. Change in the metabolites is the most important feature in a genetically modified plant or plant interactions with pests, pathogens and the environment. Plant pathogen interactions are amongst the most biochemically complex mechanisms and pose a great challenge in front of plant pathologists; metabolomics not only play a great role in deciphering these complex interactions but also the study of certain defence-related metabolic changes can be utilized in a number of ways to protect the plant from the harmful pathogens. The science of metabolomics utilizes a number of techniques to study the wide variety of metabolites. This review will give a brief about the various techniques used in metabolomics and how some of these techniques have been successfully utilized in the field of plant pathology.
Keywords:
- metabolites,
- metabolomics,
- pathogens,
- plants
Résumé
La métabolomique est l’une des sciences omiques les plus éminentes et les plus récentes. Elle constitue un outil puissant pour étudier les changements métaboliques qui se produisent dans un organisme. Les plantes produisent un large éventail de métabolites et l’étude de ces métabolites peut répondre à un certain nombre de questions que se posent les chercheurs. La modification des métabolites est le caractère déterminant dans une plante génétiquement modifiée ou dans les interactions de la plante avec les ravageurs, les pathogènes et l’environnement. Les interactions entre les plantes et les pathogènes sont parmi les mécanismes les plus complexes sur le plan biochimique et constituent un grand défi pour les phytopathologistes; la métabolomique joue non seulement un rôle important dans le décryptage de ces interactions complexes, mais l’étude de certains changements métaboliques liés à la défense peut être utilisée de plusieurs façons pour protéger la plante contre les pathogènes nuisibles. La science de la métabolomique utilise un certain nombre de techniques pour étudier une grande variété de métabolites. Cette revue donne un aperçu des différentes techniques utilisées en métabolomique et comment certaines de ces techniques ont été utilisées avec succès dans le domaine de la phytopathologie.
Mots-clés :
- métabolites,
- métabolomique,
- pathogènes,
- plantes
Parties annexes
REFERENCES
- Abdel-Farid, I.B., M. Jahangir, C.A.M.J.J. van den Hondel, H.K. Kim, Y.H. Choi, and R. Verpoorte. 2009. Fungal infection-induced metabolites in Brassica rapa. Plant Sci. 176: 608–615.
- Agostini-Costa, T.D.S., R.F. Vieira, H.R. Bizzo, D. Silveira, and M.A. Gimenes. 2012. Secondary metabolites. Pages 131-164 in S. Dhanarasu (ed.), Chromatography and its applications. InTech Open, Rijeka, Croatia.
- Akhtar, J., V.K. Jha, and H.C. Lal. 2011. Post-infectional phenolic changes in maize due to Rhizoctonia solani f. sp. sasakii causing banded leaf and sheath blight. Indian Phytopathol. 64: 261-264.
- Álvarez-Sánchez, B., F. Priego-Capote, and M.D. Luque de Castro. 2010. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal. Chem. 29: 120-127.
- Angel, P.M., and R.M. Caprioli. 2013. Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 52: 3818-3828.
- Arakaki, A.K., J. Skolnick, and J.F. McDonald. 2008. Marker metabolites can be therapeutic targets as well. Nature 456: 443.
- Arbona,V., and A. Gómez-Cadenas. 2016. Metabolomics of disease resistance in crops. Curr. Issues Mol. Biol. 19: 13-30.
- Baker, C.J., N.M. Mock, B.D. Whitaker, D.P. Roberts, C.P. Rice, K.L. Deahl, and A.A. Aver’yanov. 2005. Involvement of acetosyringone in plant–pathogen recognition. Biochem. Biophys. Res. Commun. 328: 130-136.
- Barbas, C., E.P. Moraes, and A. Villaseñor. 2011. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J. Pharm. Biomed. Anal. 55: 823-831.
- Beck, J.J., L. Smith, and N. Baig. 2014. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. Phytochem. Anal. 25: 331-341.
- Becker, L., V. Carré, A. Poutaraud, D. Merdinoglu, and P. Chaimbault. 2014. MALDI mass spectrometry imaging for the simultaneous location of resveratrol, pterostilbene and viniferins on grapevine leaves. Molecules 19: 10587-10600.
- Bednarek, P., B. Schneider, A. Svatoš, N.J. Oldham, and K. Hahlbrock. 2005. Structural complexity, differential response to infection and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol. 138: 1058-1070.
- Begley, P., S. Francis-McIntyre, W.B. Dunn, D.I. Broadhurst, A. Halsall, A. Tseng, J. Knowles, HUSERMET Consortium, R. Goodacre, and D.B. Kell. 2009. Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal Chem. 81: 7038-7046.
- Benkeblia, N., T. Shinano, and M. Osaki. 2007. Metabolite profiling and assessment of metabolome compartmen-tation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3: 297-305.
- Brechenmacher, L., Z. Lei, M. Libault, S. Findley, M. Sugawara, M.J. Sadowsky, L.W. Sumner, and G. Stacey. 2010. Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol. 153: 1808-1822.
- Broeckling, C.D., D.V. Huhman, M.A. Farag, J.T. Smith, G.D. May, P. Mendes, R.A. Dixon, and L.W. Sumner. 2005. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56: 323-336.
- Brown, M., W.B. Dunn, D.I. Ellis, R. Goodacre, J. Handl, J.D. Knowles, S. O’Hagan, I. Spasić, and D.B. Kell. 2005. A metabolome pipeline: from concept to data to knowledge. Metabolomics 1: 39-51.
- Burt, T., and S. Nandal. 2016. Pharmacometabolomics in early-phase clinical development. Clin. Transl. Sci. 9: 128-138.
- Cevallos-Cevallos, J.M., D.B. Futch, T. Shilts, S.Y. Folimonova, and J.I. Reyes-De-Corcuera. 2012. GC-MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol. Biochem. 53: 69-76.
- Chaurand, P., J.L. Norris, D.S. Cornett, J.A. Mobley, and R.M. Caprioli. 2006. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrome-try. J. Proteome Res. 5: 2889-2900.
- Chen, Y.-C., E.C. Holmes, J. Rajniak, J.-G. Kima, S. Tang, C.R. Fischer, M.B. Mudgett, and E.S. Sattely. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 115: E4920-E4929.
- Choi, Y.H., E.C. Tapias, H.K. Kim, A.W.M. Lefeber, C. Erkelens, J.Th.J. Verhoeven, J. Brzin, J. Zel, and R. Verpoorte. 2004. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol. 135: 2398-2410.
- Courant, F., J.-P. Antignac, G. Dervilly-Pinel, and B. Le Bizec. 2014. Basics of mass spectrometry based metabolomics. Proteomics 14: 2369-2388.
- Dai, H., C. Xiao, H. Liu, and H. Tang. 2010. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. J. Proteome Res. 9: 1460-1475.
- Dauwe, R., K. Morreel, G. Goeminne, B. Gielen, A. Rohde, J. Van Beeumen, J. Ralph, A.-M. Boudet, J. Kopka, S.F. Rochange, C. Halpin, E. Messens, and W. Boerjan. 2007. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J. 52: 263-285.
- Dempsey, D.M.A., and D.F. Klessig. 2012. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545.
- Dixon, R.A., L. Achnine, P. Kota, C.-J. Liu, M.S.S. Reddy, and L. Wang. 2002. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant Pathol. 3: 371-390.
- Dunn, W.B., D. Broadhurst, P. Begley, E. Zelena, S. Francis-McIntyre, N. Anderson, M. Brown, J.D. Knowles, A. Halsall, J.N. Haselden, A.W. Nicholls, I.D. Wilson, D.B. Kell, R. Goodacre, and HUSERMET Consortium. 2011. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6: 1060-1083.
- Ebel, J., A.R. Ayers, and P. Albersheim. 1976. Host-pathogen interactions: XII. Response of suspension-cultured soybean cells to the elicitor isolated from Phytophthora megasperma var. sojae, a fungal pathogen of soybeans. Plant Physiol. 57: 775-779.
- Fang, X., C.-Q. Yang, Y.-K. Wei, Q.-X. Ma, L. Yang, and X.-Y. Chen. 2011. Genomics grand for diversified plant secondary metabolites. Plant Divers. 33: 53-64.
- Fiehn, O. 2002. Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 48: 155-171. doi:10.1023/A:1013713905833
- Friesen, T.L., S.W. Meinhardt, and J.D. Faris. 2007. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corres-ponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J. 51: 681-692.
- Giberti, S., C.M. Bertea, R. Narayana, M.E. Maffei, and G. Forlani. 2012. Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. J. Plant Physiol. 169: 249-254.
- Goodacre, R., S. Vaidyanathan, W.B. Dunn, G.G. Harrigan, and D.B. Kell. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22: 245-252.
- Gottstein, D., and D. Gross. 1992. Phytoalexins of woody plants. Trees 6: 55-68.
- Gross, J.H. 2004. Mass spectrometry. Springer, Berlin, Heidelberg, Germany. 534 pp.
- Guo, Y., A. Graber, R.N. McBurney, and R. Balasubramanian. 2010. Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms. BMC Bioinform. 11: 447.
- Haas, D., and G. Défago.2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319.
- Handelsman, J., and E.V. Stabb.1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869.
- Hatada, K., and T. Kitayama. 2004. Introduction to NMR spectroscopy. Pages 1-42 in K. Hatada, and T. Kitayama (eds.), NMR spectroscopy of polymers. Springer, New York, USA.
- He, X.-Z., and R.A. Dixon. 2000. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12: 1689-1702.
- Hegeman, A.D. 2010. Plant metabolomics—meeting the analytical challenges of comprehensive metabolite analysis. Brief. Funct. Genom. 9: 139-148.
- Hong, Y.-S., A. Martinez, G. Liger-Belair, P. Jeandet, J.-M. Nuzillard, and C. Cilindre. 2012. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea infected Vitis vinifera cv. Chardonnay berries. J. Exp. Bot. 63: 5773-5785.
- Horgan, R.P., and L.C. Kenny. 2011. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 13: 189-195.
- Huhman, D.V., and L.W. Sumner. 2002. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347-360. doi:10.1016/S0031-9422(01)00432-0
- Khakimov, B., S. Bak, and S.B. Engelsen. 2014. High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. J. Cereal Sci. 59: 393-418.
- Krishnan, P., N.J. Kruger, and R.G. Ratcliffe. 2005. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56: 255-265.
- Lattanzio, V., V.M.T. Lattanzio, and A. Cardinali. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Pages 23-67 in F. Imperato (ed.), Phytochemistry: advances in research. Research Signpost, Trivandrum, Kerala, India.
- Lima, M.R.M., M.L. Felgueiras, G. Graça, J.E.A. Rodrigues, A. Barros, A.M. Gil, and A.C.P. Dias. 2010. NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. J Exp. Bot. 61: 4033-4042.
- López-Gresa. M.P., F. Maltese, J.M. Bellés, V. Conejero, H.K. Kim, Y.H. Choi, and R. Verpoorte. 2010. Metabolic response of tomato leaves upon different plant-pathogen interac-tions. Phytochem. Anal. 21: 89-94.
- Luan, J.-B., D.-M. Yao, T. Zhang, L.L. Walling, M. Yang, Y.-J. Wang, and S.-S. Liu. 2013. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol. Lett. 16: 390-398.
- Lui, L.H., A. Vikram, Y. Abu-Nada, A.C. Kushalappa, G.S.V. Raghavan, and K. Al-Mughrabi. 2005. Volatile metabolic profiling for discrimination of potato tubers inoculated with dry and soft rot pathogens. Am. J. Potato Res. 82: 1-8.
- Mauck, K.E., C.M. De Moraes, and M.C. Mescher. 2014. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant Cell Environ. 37: 1427-1439.
- Miyata, K., M. Miyashita, R. Nose, Y. Otake, and H. Miyagawa. 2006. Development of a colorimetric assay for determining the amount of H2O2 generated in tobacco cells in response to elicitors and its application to study of the structure-activity relationship of flagellin-derived peptides. Biosci. Biotechnol. Biochem. 70: 2138-2144.
- Mucha, P., J. Ruczynski, M. Dobkowski,E. Backtrog, and P. Rekowski. 2019. Capillary electrophoresis study of systemin peptides spreading in tomato plant. Electrophoresis 40: 336-342.
- Mutuku, J.M., and A. Nose. 2012. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway. Plant Cell Physiol. 53: 1017-1032.
- Návarová, H., F. Bernsdorff, A.-C. Döring, and J. Zeier. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24: 5123-5141.
- Niederbacher, B., J.B. Winkler, and J.P. Schnitzler. 2015. Volatile organic compounds as non-invasive markers for plant phenotyping. J. Exp. Bot. 66: 5403-5416.
- Norris, J.L., and R.M. Caprioli. 2013. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113: 2309-2342.
- Okazaki, Y., and K. Saito. 2012. Recent advances of metabolomics in plant biotechnology. Plant Biotechnol. Rep. 6: 1-15.
- Oksman-Caldentey, K.-M., and D. Inzé. 2004. Plant cell factories in the post-genomics era: new ways to produce designer secondary metabolites. Trends Plant Sci. 9: 433-440.
- Olson, B.H., and G.L. Goerner. 1965. Alpha sarcin, a new antitumor agent. I. Isolation, purification, chemical composition, and the identity of a new amino acid. Appl. Microbiol. 13: 314-321.
- Ongena, M., E. Jourdan, A. Adam, M. Paquot, A. Brans, B. Joris, J.-L. Arpigny, and P. Thonart. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
- Pearce, G., D. Strydom, S. Johnson, and C.A. Ryan. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895-897.
- Perrin, D.R., and W. Bottomley. 1961. Pisatin: an antifungal substance from Pisumsativum L. Nature 191: 76-77.
- Piasecka, A., N. Jedrzejczak-Rey, and P. Bednarek. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206: 948-964.
- Pushpa, D., K.N. Yogendra, R. Gunnaiah, A.C. Kushalappa, and A. Murphy. 2014. Identification of late blight resistance-related metabolites and genes in potato through non-targeted metabolomics. Plant Mol. Biol. Report. 32: 584-595.
- Rao, Q., W. Guo, and X. Chen. 2015. Identification and characterization of an antifungal protein, AfAFPR9, produced by marine-derived Aspergillus fumigatus R9. J. Microbiol. Biotechnol. 25: 620-628.
- Roessner, U., A. Luedemann, D. Brust, O. Fiehn, T. Linke, L. Willmitzer, and A.R. Fernie. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environ-mentally modified plant systems. Plant Cell 13: 11-29.
- Röhlig, R.M., J. Eder, and K.-H. Engel. 2009. Metabolite profiling of maize grain: differentiation due to genetics and environment. Metabolomics 5: 459.
- Ryan, C.A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477: 112-121. doi:10.1016/S0167-4838(99)00269-1
- Sato, S., T. Soga, T. Nishioka, and M. Tomita. 2004. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectro-metry and capillary electrophoresis diode array detection. Plant J. 40: 151-163.
- Shah, J., R. Chaturvedi, Z. Chowdhury, B. Venables, and R.A. Petros. 2014. Signaling by small metabolites in systemic acquired resistance. Plant J. 79: 645-658.
- Shah, J., and J. Zeier. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4: 30.
- Shen, Y., J. Li, J. Xiang, J. Wang, K. Yin, and Q. Liu. 2019. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Expr 9: 117.
- Siricord, C., and P.A. O’Brien. 2008. MALDI-TOF mass spectrometry can be used for detection of pathogenic microorganisms in soil. Australas. Plant Pathol. 37: 543-545.
- Skirycz, A., S. De Bodt, T. Obata, I. De Clercq, H. Claeys, R. De Rycke, M. Andriankaja, O. Van Aken, F. Van Breusegem, A.R. Fernie, and D. Inze. 2010. Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol. 152: 226-244.
- Soares, M.S., D.F. da Silva, M.R. Forim, M.F.G.F. da Silva, J.B. Fernandes, P.C. Vieira, D.B. Silva, N.P. Lopes, S.A. de Carvalho, A.A. de Souza, and M.A. Machado. 2015. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. Phytochemistry 115: 161-170.
- Soylu, S. 2006. Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Sci. 170: 942-952.
- Stitt, M., and A.R. Fernie. 2003. From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon-nitrogen interac-tions. Curr. Opin. Biotechnol. 14: 136-144. doi:10.1016/S0958-1669(03)00023-5
- Suharti, W.S., A. Nose, and S.-H. Zheng.2016. Metabolite profiling of sheath blight disease resistance in rice: in the case of positive ion mode analysis by CE/TOF-MS. Plant Prod. Sci. 19: 279-290.
- Sumner, L.W., P. Mendes, and R.A. Dixon. 2003. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817-836. doi:10.1016/S0031-9422(02)00708-2
- Tolstikov, V.V., and O. Fiehn. 2002. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301: 298-307.
- Trygg, J., E. Holmes, and T. Lundstedt. 2007. Chemometrics in metabonomics. J. Proteome Res. 6: 469-479.
- Tugizimana, F., A.T. Djami-Tchatchou, P.A. Steenkamp, L.A. Piater, and I. Dubery. 2019. Metabolomic analysis of defense-related reprogramming in Sorghum bicolor in response to Colletotrichum sublineolum infection reveals a functional metabolic web of phenylpropanoid and flavonoid pathways. Front. Plant Sci. 9: 1840.
- Tugizimana, F., L. Piater, and I. Dubery. 2013. Plant metabolomics: a new frontier in phytochemical analysis. S. Afr. J. Sci. 109.
- Tzin, V., and G. Galili. 2010. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arabidopsis Book 8: e0132.
- Urbanczyk-Wochniak, E., A. Luedemann, J. Kopka, J. Selbig, U. Roessner-Tunali, L. Willmitzer, and A.R. Fernie. 2003. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 4: 989-993.
- Van Loon, L.C., and P.A.H.M. Bakker. 2003. Signalling in rhizobacteria-plant interactions. Pages 297-330 in H. de Kroon, and E.J.W. Visser (eds.), Root ecology. Springer, Berlin, Heidelberg, Germany.
- Van Loon, L.C., and B.R. Glick. 2004. Increased plant fitness by rhizobacteria. Pages 177-205 in H. Sandermann (ed.), Molecular ecotoxicology of plants. Springer, Berlin, Heidelberg, Germany.
- Wagner, C., M. Sefkow, and J. Kopka. 2003. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62: 887-900. doi:10.1016/S0031-9422(02)00703-3
- Wang, B., X. Yang, H. Zeng, H. Liu, T. Zhou, B. Tan, J. Yuan, L. Guo, and D. Qiu. 2012. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl. Microbiol. Biotechnol. 93: 191-201.
- Wang, J.-Y., Y. Cai, J.-Y. Gou, Y.-B. Mao, Y.-H. Xu, W.-H. Jiang, and X.-Y. Chen. 2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl. Environ. Microbiol. 70: 4989-4995.
- Wang, N., M. Liu, L. Guo, X. Yang, and D. Qiu. 2016. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. Int. J. Biol. Sci. 12: 757-767.
- Ward, J.L., J.M. Baker, A.M. Llewellyn, N.D. Hawkins, and M.H. Beale. 2011. Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow. Proc. Natl. Acad. Sci. USA 108: 10762-10767.
- Wnendt, S., N. Ulbrich, and U. Stahl. 1994. Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Curr. Genet. 25: 519-523.
- Yang, W.-L., and M.A. Bernards.2007. Metabolite profiling of potato (Solanum tuberosum L.) tubers during wound-induced suberization. Metabolomics 3: 147-159.
- Yogendra, K.N., A.C. Kushalappa, F. Sarmiento, E. Rodriguez, and T. Mosquera. 2014. Metabolomics deciphers quanti-tative resistance mechanisms in diploid potato clones against late blight. Funct. Plant Biol. 42: 284-298.
- Zhang, A., H. Sun, P. Wang, Y. Han, and X. Wang. 2012. Modern analytical techniques in metabolomics analysis. Analyst 137: 293-300.