Résumés
Abstract
The objectives of this study were to determine the qualitative production of extracellular enzymes produced by ten endophytic fungi and to investigate their antifungal potential against some phytopathogenic fungi namely, Alternaria alternata, Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani. In addition, the endophytic fungal isolates were screened for enzyme production by plate assay method. All endophytic fungi were able to produce proteases and cellulases with different levels except Alternaria alternata. Meanwhile, Fusarium, Alternaria, Nigrospora and Phoma species produced amylase. None of the tested endophytic fungi showed laccase production. Endophytic fungi filtrates revealed variable antifungal activities against the tested phytopathogenic fungi with Curvularia lunata filtrate being the most effective. This filtrate induced 48% and 80% growth inhibition of B. cinerea and R. solani, respectively. The phytochemical analysis of the endophytic fungi crude extract disclosed the presence of alkaloids and terpenoids. Morphological observations by optical microscope showed uncommon hyphal deformation and enlargement of cytoplasmic vacuoles of R. solani when treated with C. lunata filtrate. Furthermore, C. lunata (hyphal suspension and filtrate) was examined to control root rot caused by R. solani on faba bean plants in vivo. Both antagonistic treatments significantly reduced root rot severity.
Keywords:
- biological control,
- Curvularia lunata,
- endophytes,
- extracellular enzymes,
- pathogenic fungi,
- secondary metabolites
Résumé
Les objectifs de cette étude étaient de déterminer la production qualitative des enzymes extracellulaires de dix champignons endophytes et d’étudier le potentiel antimicrobien de leurs filtrats sur certains champignons phyto-pathogènes. Les dosages enzymatiques ont démontré qu’il y avait une variation dans la production de différentes enzymes extracellulaires parmi les champignons endophytes testés. Tous les champignons endophytes étaient capables de produire des protéases et de la cellulase avec des niveaux différents sauf Alternaria alternata. Pourtant, les espèces Fusarium, Alternaria, Nigrospora et Phoma étaient capables de produire l’amylase. Aucun des champignons endophytes testés n’a produit de laccase. Les filtrats de champignons endophytes ont révélé des activités antifongiques variables contre les champignons phytopathogènes testés, dont le plus efficace était le filtrat de Curvularia lunata. Ce filtrat a induit une inhibition de croissance de 48 % et 80 % de Botrytis cinerea et Rhizoctonia solani respectivement. L’analyse phytochimique de l’extrait brut de champignons endophytes a révélé la présence d’alcaloïdes et de terpénoïdes. Les observations morphologiques au microscope optique ont montré une déformation hypale et un élargissement des vacuoles cytoplasmiques de R. solani lorsqu’il est traité avec du filtrat de C. lunata. De plus, C. lunata (suspension d’hypales et filtrat) a été examiné pour lutter contre la pourriture des racines causée par R. solani sur des plants de fèves in vivo. Les deux traitements antagonistes ont considérablement réduit la gravité de la pourriture des racines.
Mots-clés :
- lutte biologique,
- Curvularia lunata,
- endophytes,
- enzymes extracellulaires,
- champignons pathogènes,
- métabolites secondaires
Parties annexes
REFERENCES
- Alori, E.T., and O.O. Babalola. 2018. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 9: 2213.
- Anyasi, R.O. and H.I. Atagana. 2019. Endophyte: understanding the microbes and its applications. Pak. J. Biol. Sci. 22: 154-167.
- Avinash, K.S., H.S. Ashwini, H.N. Ramesh Babu, and Y.L. Krishnamurthy. 2015. Antimicrobial potential of crude extract of Curvularia lunata, an endophytic fungi isolated from Cymbopogoncaesius. J. Mycol. 2015: 185821.
- Bezerra, J.D.P., C.C.F. Nascimento, R.d.N. Barbosa, D.C.V. da Silva, V.M. Svedese, E.B. Silva-Nogueira, B.S., Gomes, L.M. Paiva, and C.M. Souza-Motta. 2015. Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz. J. Microbiol. 46: 49-57.
- Bhardwaj, A., D. Sharma, N. Jadon, and P.K. Agrawal. 2015. Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus Roxburghii. Arch. Clinc. Microbiol. 6: 1-9.
- Boulogne, I., P. Petit, H. Ozier-Lafontaine, L. Desfontaines, and G. Loranger-Merciris. 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environ. Chem. Lett. 10: 325-347.
- Busby, P.E., M. Ridout, and G. Newcombe. 2016. Fungal endophytes: modifiers of plant disease. Plant Mol. Biol. 90: 645-655.
- Chareprasert, S., J. Piapukiew, S. Thienhirun, A.J.S. Whalley, and P. Sihanonth. 2006. Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J. Microbiol. Biotechnol. 22: 481-486. doi:10. 1007/s11274-005-9060-x
- Chathurdevi, G., and S.U. Gowrie. 2016. Endophytic fungi isolated from medicinal plant-a promising source of potential bioactive metabolites. Int. J. Curr. Pharm. Res. 8: 50-56.
- D’Costa, V.M., C.E. King, L. Kalan, M. Morar, W.W.L. Sung, C. Schwarz, D. Froese, G. Zazula, F. Calmels, R. Debruyne, G.B. Golding, H.N. Poinar, and G.D. Wright. 2011. Antibiotic resistance is ancient. Nature 477: 457-461
- Deans, S.G., and G. Ritchie. 1987. Antibacterial properties of plant essential oils. Int. J. Food Microbiol. 5: 165-180. doi:10.1016/0168-1605(87)90034-1
- Desire, M.H., F. Bernard, M.R. Forsah, C.T. Assang, and O.N. Denis. 2014. Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. leaves. J. Appl. Biol. Biotechnol. 2: 1-6
- Dutta, D., K.C. Puzari, R. Gogoi, and P. Dutta. 2014. Endophytes: exploitation as a tool in plant protection. Braz. Arch. Biol. Technol. 57: 621-629.
- Fadiji, A.E., and O.O. Babalola. 2020. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8: 467.
- Food and Agriculture Organization of the United Nations. 2019. The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome, Italy. 182 pp.
- Firáková, S., M. Šturdíková, and M. Múčková. 2007. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia. 62: 251-257. doi:10. 2478/s11756-007-0044-1
- Gao, F.-K., C.-C. Dai, and X.-Z. Liu. 2010. Mechanism of fungal endophytes in plant protection against pathogen. Afr. J. Microbiol. Res. 4: 1346-1351.
- Gessler, N.N., A.S. Egorova, and T.A. Belozerskaya. 2014. Melanin pigments of fungi under extreme environmental conditions (Review). Appl. Biochem. Microbiol. 50: 105-113.
- Hallmann, J., A. Quadt-Hallmann, W.F. Mahaffee, and J.W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914.
- Hankin, L., and S.L. Anagnostakis. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia 67: 597-607. doi:10.2307/3758395
- Hossain, M.T., A. Khan, E.J. Chung, Rashid, M.H.-O., and Y.R. Chung. 2016. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol. J. 32: 228-241.
- Jia, M., L. Chen, H.-L. Xin, C.-J. Zheng, K. Rahman, T. Han, and L.-P. Qin. 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front. Microbiol. 7: 906. doi:10.3389/fmicb.2016. 00906
- Kaaniche, F., A. Hamed, A.S. Abdel-Razek, D. Wibberg, N. Abdissa, I.Z. El Euch, N. Allouche, L. Mellouli, M. Shaaban, and N. Sewald. 2019. Bioactive secondary metabolites from new endophytic fungus Curvularia sp. isolated from Rauwolfia macrophylla. PLOS One 14: e0217627. doi:10. 1371/journal.pone.0217627
- Khan, A.L., J. Hussain, A. Al-Harrasi, A. Al-Rawahi, and I.-J. Lee. 2015. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 35: 62-74.
- Khan, A.L., R. Shahzad, A. Al-Harrasi, and I.-J. Lee. 2017. Endophytic microbes: a resource for producing extracellular enzymes. Pages 95-110 in D.K. Maheshwari, and K. Annapurna (eds.), Endophytes: crop productivity and protection. Springer, Cham, Switzerland.
- Khangura, R.K., M.J. Barbetti, and M.W. Sweetingham. 1999. Characterization and pathogenicity of Rhizoctonia species on canola. Plant Dis. 83: 714-721. doi:10.1094/PDIS. 1999.83.8.714
- Khare, E., J. Mishra, and N.K. Arora. 2018. Multifaceted interactions between endophytes and plant: developments and prospects. Front. Microbiol. 9: 2732 doi:10.3389/ fmicb.2018.02732
- Kumar, R., A. Sinha, S. Srivastava, and S. Singh. 2014. Evaluation of substrates for mass multiplication of green manure associated fungi for biological control of soil borne phytopathogens. Indian Phytopathol. 67: 396-401.
- Kusari, S., S. Singh, and C. Jayabaskaran. 2014. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 32: 297-303. doi:10. 1016/j.tibtech.2014.03.009
- Mejía, L.C., E.A. Herre, J.P. Sparks, K. Winter, M.N. García, S.A. Van Bael, J. Stitt, Z. Shi, Y. Zhang, M.J. Guiltinan, and S.N. Maximova. 2014. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 5: 479. doi:10.3389/fmicb.2014.00479
- Parthasarathy, R., and M. Sathiyabama. 2013. Screening and characterization of antimicrobial compound from endophytic fungus Curvularia lunata, isolated from Catharanthus roseus. World J. Pharm. Res. 2: 3078-3086.
- Pavithra, G., B. Sumant, R. Meenakshi, and S. Seweta. 2020. Role of endophytic microbes against plant pathogens: a review. Asian J. Plant Sci. 19: 54-62. doi:10.3923/ajps. 2020.54.62
- Pieterse, C.M.J., C. Zamioudis, R.L. Berendsen, D.M. Weller, S.C.M. Van Wees, and P.A.H.M. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375.
- Ramesha, A., and C. Srinivas. 2014. Antimicrobial activity and phytochemical analysis of crude extracts of endophytic fungi isolated from Plumeria acuminata L. and Plumeria obtusifolia L. Euro. J. Exp. Bio. 4: 35-43.
- Ramesha, A., and C. Srinivas. 2018. Antimicrobial activity and phytochemical analysis of endophytic fungal extracts isolated from ethno pharmaceutical plant Rauwolfia tetraphylla L. J. Pure Appl. Microbiol. 12: 317-332. doi:10. 22207/JPAM.12.1.38
- Robert-Seilaniantz, A., M. Grant, and J.D.G. Jones. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49: 317-343.
- Rustamova, N., K. Bozorov, T. Efferth, and A. Yili. 2020. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochem. Rev. 19: 425-448. doi:10.1007/s11101-020-09672-x
- Saad, M.M.G., R.Y. Ghareeb, and A.A. Saeed. 2019. The potential of endophytic fungi as bio-control agents against the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Co. 29: 7.
- Saikkonen, K., P. Wäli, M. Helander, and S.H. Faeth. 2004. Evolution of endophyte–plant symbioses. Trends Plant Sci. 9: 275-280.
- Samanthi, K.A.U., S. Wickramarachchi, E.M.K. Wijeratne, and P.A. Paranagama. 2015. Two new bioactive polyketides from Curvularia trifolii, an endolichenic fungus isolated from Usnea sp., in Sri Lanka. J. Natl. Sci. Found. 43: 217-224. doi:10.4038/jnsfsr.v43i3.7950
- Sieber, T.N. 2007. Endophytic fungi in forest trees: are they mutualists? Fungal Biol. Rev. 21: 75-89. doi:10.1016/j.fbr. 2007.05.004
- Sunitha, V.H., D.N. Devi, and C. Srinivas. 2013. Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J. Agric. Res. 9: 1-9. doi:10. 5829/idosi.wjas.2013.9.1.72148
- White, J.F., K.L. Kingsley, Q. Zhang, R. Verma, N. Obi, S. Dvinskikh, M.T. Elmore, S.K. Verma, S.K. Gond, and K.P. Kowalski. 2019. Review: endophytic microbes and their potential applications in crop management. Pest Manag. Sci. 75: 2558-2565.