Résumés
Abstract
Buckeye rot disease of tomato caused by Phytophthora nicotianae var. parasitica is the most destructive disease for reducing tomato yields especially in those regions where fruiting coincides with rainy season. In the present study, the pathogen was characterized by sequencing the DNA region coding for internal transcribed spacer (ITS) region and sequence was deposited in NCBI with accession no. MF398189. The phylogenetic analysis using the Maximum Composite Likelihood (MCL) approach revealed that the isolated pathogen clustered together with P. nicotianae with high bootstrap value of 99%. Incubation period of 120 h was observed in pin-prick method of pathogen inoculation compared to 168 h in surface inoculation method. Further, the disease resistance induced by nine different elicitors of induced resistance against buckeye rot disease of tomato were studied under field conditions for two consecutive years 2016 and 2017. Minimum disease incidence of 9.57% and 7.93% was observed with foliar spray of ß-aminobutyric acid (2 mM) for 2016 and 2017, respectively. It was followed by potassium chloride (100 mM) with disease incidence of 11.32% and 8.85% for year 2016 and 2017, respectively. Maximum fruit yield of 7.02 kg and 8.12 kg was found in treatment with ß-aminobutyric acid as compared to 2.61 kg and 2.55 kg in control for year 2016 and 2017, respectively.
Keywords:
- induced resistance,
- eco friendly,
- Phytophthora,
- inducers
Résumé
Le mildiou zoné de la tomate causé par Phytophthora nicotianae var. parasitica est la maladie la plus destructrice qui cause une réduction des rendements de tomates, en particulier dans les régions où la fructification coïncide avec la saison des pluies. Dans cette étude, l’agent pathogène a été caractérisé par séquençage de la région d’ADN codant pour la région de l’espaceur interne transcrit (ITS) et la séquence a été déposée sur NCBI avec le numéro d’accession MF398189. L’analyse phylogénétique utilisant l’approche de probabilité composite maximale (MCL) a révélé que l’agent pathogène isolé se regroupait avec P. nicotianae avec une valeur de bootstrap élevée à 99 %. Une période d’incubation de 120 h a été réalisée avec la méthode d’inoculation de l’agent pathogène par piqûres d’aiguilles comparativement à 168 h avec la méthode d’inoculation en surface. De plus, la résistance à la maladie induite par neuf éliciteurs différents contre le mildiou zoné de la tomate a été étudiée sur le terrain pendant deux années consécutives, en 2016 et en 2017. Une incidence minimale de la maladie de 9,57 % et de 7,93 % a été observée avec une pulvérisation foliaire d’acide ß-aminobutyrique (2 mM) pour 2016 et 2017 respectivement, suivi du chlorure de potassium (100 mM) avec une incidence de la maladie de 11,32 % et 8,85 % pour les années 2016 et 2017 respectivement. Un rendement maximal en fruits de 7,02 kg et de 8,12 kg a été trouvé dans le traitement avec de l’acide ß-aminobutyrique par rapport à 2,61 kg et 2,55 kg dans le traitement contrôle pour les années 2016 et 2017 respectivement.
Mots-clés :
- résistance induite,
- écologique,
- Phytophthora,
- éliciteurs
Parties annexes
REFERENCES
- Cohen, Y. 1993. Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology 84: 55-59.
- Cohen, Y., M. Vaknin, and B. Mauch-Mani. 2016. BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica 44: 513-538. doi:10.1007/s12600-016-05 46-x
- Davidse, L.C., O.C.M. Gerritsma, J. Ideler, K. Pie, and G.C.M. Velthuis. 1988. Antifungal modes of action of metalaxyl, cyprofuram, benalaxyl and oxadixyl in phenylamide-sensitive and phenylamide-resistant strains of Phytophthoramegasperma f. sp. medicaginis and Phytophthora infestans. Crop Prot. 7: 347-355. doi:10.1016/0261-2194(88)90001-4
- Davidse, L.C., D. Looijen, L.J. Turkensteen, and D. van der Wal. 1981. Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields. Neth. J. Plant Pathol. 87: 65-68.
- Deahl, K.L., D.A. Inglis, and S.P. DeMuth. 1993. Testing for resistance to metalaxyl in Phytophthora infestans isolates from northwestern Washington. Am. Potato J. 70: 779-795.
- Dhingra, O.D, and J.B. Sinclair. 1995. Basic plant pathology methods. CRC Press. 448 pp.
- Dong, X. 2004. NPR1, all things considered. Curr. Opin. Plant. Biol. 7: 547-552.
- El-Mohamedy, R.S.R., M.M. Abdel-Kader, F. Abd-El-Kareem, and N.S. El-Mougy. 2013. Essential oils, inorganic acids and potassium salts as control measures against the growth of tomato root rot pathogens in vitro. Int. J. Agric. Technol. 9: 1507-1520.
- Eschen-Lippold, E., S. Altmann, and S. Rosahl. 2010. DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Mol. Plant Microbe Interact. 23: 585-592.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.
- Gilardi, G., S. Demarchi, M. Gullino, and A. Garibaldi. 2014. Managing Phytophthora crown and root rot on tomato by pre-plant treatments with biocontrol agents, resistance inducers, organic and mineral fertilizers under nursery conditions. Phytopathol. Mediterr. 53: 205-215. doi:10. 14601/Phytopathol_Mediterr-12361
- Goodwin, S.B., L.S. Sujkowski, and W.E. Fry. 1996. Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and Western Canada. Phytopatholy 86: 793-800.
- Gupta, S.K., and N.K. Bharat. 2008. Management of buckeye rot and late blight of tomato through combi-fungicides. Pestology 32: 17-19.
- Gupta, S.K., and T.S. Thind. 2006. Disease problems in vegetable production. Scientific Publishers, Jodhpur, India. 576 pp.
- Hall, G. 1993. An integrated approach to the analysis of variation in Phytophthora nicotianae and a redescription of the species. Mycol. Res. 97: 559-574. doi:10.1016/S0953-7562(09)81179-9
- Halsall, D.M., and R.I. Forrester. 1997. Effects of certain cations on the formation and infectivity of Phytophthora zoospores. 1. Effects of calcium, magnesium, potassium, and iron ions. Can. J. Microbiol. 23: 994-1001. doi:10. 1139/m77-148
- Iram, S., and I. Ahmad. 2009. A review of metalaxyl resistance in Phytophthora infestans from Pakistan. Acta Hortic. 834: 155-160.
- Jakab, G., V. Cottier, V. Toquin, G. Rigoli, L. Zimmerli, J.-P. Metraux, and B. Mauch-Mani. 2001. ß-aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107: 29-37.
- Koné, D., A.S. Csinos, K.L. Jackson, and P. Ji. 2009. Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Prot. 28: 533-538.
- Matson, M.E.H., I.M. Small, W.E. Fry, and H.S. Judelson. 2015. Metalaxyl resistance in Phytophthora infestans: assessing role of RPA190 gene and diversity within clonal lineages. Phytopatholy 105: 1594-1600. doi:10.1094/PHY TO-05-15-0129-R
- Mukalazi, J., E. Adipala, T. Sengooba, J.J. Hakiza, M. Olanya, and H.M. Kidanemariam. 2001. Metalaxyl resistance, mating type and pathogenicity of Phytophthora infestans in Uganda. Crop Prot. 20: 379-388. doi:10.1016/S0261-2194(00)00145-9
- Murray, M.G., and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325.
- Potlakayala, S.D., C. DeLong, A. Sharpe, and P.R. Fobert. 2007. Conservation of non-expressor of pathogenesis-related genes1 function between Arabidopsis thaliana and Brassica napus. Physiol. Mol. Plant Pathol. 71: 174-183.
- Randall, E., V. Young, H. Sierotzki, G. Scalliet, P.R.J. Birch, D.E.L. Cooke, M. Csukai, and S.C. Whisson. 2014. Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans. Mol. Plant Pathol. 15: 664-676. doi:10.1111/m pp.12124
- Shah, T.A. 2009. Cause and management of Phytophthora fruit rot of tomato (Lycopersicon esculentum Mill.) in Kashmir. Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India. 224 pp.
- Sharma, M. 2016. Potential of induced resistance to manage diseases of vegetable crops. Pages 255-270 in P. Chowdappa, P. Sharma, D. Singh, and A.K. Misra (eds.), Perspectives of plant pathology in genomic era. Today & Tomorrows Printers and Publishers, New Delhi, India.
- Sharma, R.C., and H. Singh. 1992. Occurrence of Phytophthora nicotianae var. parasitica on hybrid tomato in Punjab. Plant Dis. Res. 7: 90-91.
- Shattock, R.C. 1988. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans. Plant Pathol. 37: 4-11.
- Shridhar, B.P., M. Sharma, S.K. Gupta, and S.K. Sharma. 2018. New generation fungicides for the management of buckeye rot of tomato. Indian Phytopathol. 71: 621-625.
- Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9: 678-687. doi:10.1093/oxfordjournals.molbev.a040752
- Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
- Thomson, S.V., and R.B. Hine. 1972. Atypical sporangium-like structures of Phytophthora parasitica. Mycologia 64: 457-460.
- Waterhouse, G.M. 1963. Key to the species of Phytophthora de Bary. Mycological papers no. 92. Commonwealth Mycological Institute, Kew, England. 22 pp.
- Waterhouse, G.M. 1974.Phytophthora palmivora and some related species. Pages 51-70 in P.H. Gregory (ed.), Phytophthora disease of cocoa. Longman, London, England. 336 pp.
- Waterhouse, G.M., and J.M. Waterston. 1964.Phytophthora nicotianae var parasitica. CMI Descriptions of Pathogenic Fungi and Bacteria. No. 33. 2 pp.