Résumés
Résumé
Au Canada, le nématode à kyste du soya, Heterodera glycines (NKS), a d’abord été détecté en Ontario en 1988 et plus récemment au Québec en 2013. Il est la principale cause des pertes économiques associées à la production de soya au Canada et aux États-Unis. Les moyens de lutte contre ce ravageur sont limités et reposent essentiellement sur l’exploitation des gènes de résistance naturels du soya. II est primordial d’étudier la réponse du NKS ainsi que celle de son hôte sous le climat du Québec afin de développer des stratégies de lutte efficaces. De plus, les fluctuations de température associées aux changements climatiques modifieront les traits biologiques du NKS, la phénologie de son hôte et leur interaction. Cela pourrait ainsi affecter l’efficacité et la durabilité des outils de gestion. Dans ce contexte, l’impact des changements climatiques anticipés sur les interactions entre le nématode à kyste du soya et son hôte principal, le soya, sera présenté.
Mots-clés :
- Changements climatiques,
- Heterodera glycines,
- interactions moléculaires,
- soya
Abstract
In Canada, the soybean cyst nematode, Heterodera glycines (SCN), was first detected in Ontario in 1988 and more recently in Quebec in 2013. It is the main cause of economic loss associated with soy production in Canada and the United States. Control methods against this pest are limited and mostly rely on soy’s natural resistance genes. It is essential to study the response of the SCN and that of its host under Quebec’s climate in order to develop effective control strategies. Moreover, the temperature fluctuations associated with climate change will modify SCN’s biological characters, its host’s phenology, and their interaction. This could affect both the efficacy and durability of management tools. In this context, the impact of the anticipated climate change on the interactions between the soybean cyst nematode and its principal host, soy, will be presented.
Keywords:
- Climate change,
- molecular interactions,
- soy,
- soybean cyst nematode
Parties annexes
Bibliographie
- Ahanger, R.A., H.A. Bhat, T.A. Bhat, S.A. Ganie, A.A. Lone, I.A. Wani, S.A. Ganai, S. Haq, O.A. Khan, J.M. Junaid et T.A. Bhat. 2013. Impact of climate change on plant diseases. Int. J. Modern Plant Anim. Sci. 1 : 105-115.
- Ali, N. 2010. Soybean processing and utilization. Pages 345-374 in G. Singh (éd.), The soybean: botany, production and uses, 1st ed. CAB International, Wallingford, UK.
- Alston, D.G. et D.P. Schmitt. 1987. Population density and spatial pattern of Heterodera glycines in relation to soybean phenology. J. Nematol. 19 : 336-345.
- Amtmann, A., S. Troufflard et P. Armengaud. 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant. 133 : 682-691.
- Anderson, J.P., E. Badruzsaufari, P.M. Schenk, J.M. Manners, O.J. Desmond, C. Ehlert, D.J. Maclean, P.R. Ebert et K. Kazan. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in arabidopsis. Plant Cell 16 : 3460-3479.
- Anderson, T.R. et T.W. Welacky. 1988. First report of Heterodera glycines on soybeans in Ontario, Canada. Plant Dis. 72 : 453.
- Ariatti, A. 2014. Comparison of SBR spread in the US 2008-2011. Penn State College of Agricultural Sciences, University Park, PA, USA. [En ligne], [http://plantpath.psu.edu/research/centers-and-institutes/ceal/research/soybean-rust/historial-risk-assessment/comparison-of-sbr-spread-in-the-us-2008-2011] (consulté le 8 juillet 2015).
- Atkinson, N.J. et P.E. Urwin. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63 : 3523-3543.
- Atkinson, N.J., C.J. Lilley et P.E. Urwin. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162 : 2028-2041.
- Bekal, S., J.P. Craig, M.E. Hudson, T.L. Niblack, L.L. Domier et K.N. Lambert. 2008. Genomic DNA sequence comparison between two inbred soybean cyst nematode biotypes facilitated by massively parallel 454 micro-bead sequencing. Mol. Genet. Genom. 279 : 535-543.
- Boland, G.J., M.S. Melzer, A. Hopkin, V. Higgins et A. Nassuth. 2004. Climate change and plant diseases in Ontario. Can. J. Plant Pathol. 26 : 335-350.
- Bonner, M.J. et D.P. Schmitt. 1985. Population dynamics of Heterodera glycines life stages on soybean. J. Nematol. 17 : 153-158.
- Brucker, E., S. Carlson, E. Wright, T. Niblack et B. Diers. 2005. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor. Appl. Genet. 111 : 44-49.
- CAB International (CABI). 2013. Heterodera glycines (soybean cyst nematode). [En ligne], [http://www.cabi.org/isc/?compid=5&dsid=27027&loadmodule=datasheet&page=481&site=144] (consulté le 8 juillet 2015).
- Caldwell, B.E., C.A. Brim et J.P. Ross. 1960. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron. J. 52 : 635-636.
- Chakraborty, S. et S. Datta. 2003. How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol. 159 : 733-742.
- Cook, D.E., T.G. Lee, X. Guo, S. Melito, K. Wang, A.M. Bayless, J. Wang, T.J. Hughes, D.K. Willis, T.E. Clemente, B.W. Diers, J. Jiang, M.E. Hudson et A.F. Bent. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338 : 1206-1209.
- Cook, D.E., A.M. Bayless, K. Wang, X. Guo, Q. Song, J. Jiang et A.F. Bent. 2014. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol. 165 : 630-647.
- Cooper, W.R., L. Jia et L. Goggin. 2005. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J. Chem. Ecol. 31 : 1953-1967.
- Dong, K. et C.H. Opperman. 1997. Genetic analysis of parasitism in the soybean cyst nematode Heterodera glycines. Genetics 146 : 1311-1318.
- Dropkin, V.H. 1969. Necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59 : 1632-1637.
- Elad, Y. et I. Pertot. 2014. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28 : 99-139.
- FAOSTAT. 2014. Comodities by country – 2012. [En ligne], [http://faostat.fao.org/site/339/default.aspx] (consulté le 8 juillet 2015).
- Ferris, H., L. Zheng et M.A. Walker. 2013. Soil temperature effects on the interaction of grape rootstocks and plant–parasitic nematodes. J. Nematol. 45 : 49-57.
- Food and Agriculture Organization (FAO). 2013. Food outlook – Oilseeds market summary. [En ligne], [http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Oilcrops/Documents/Food_outlook_oilseeds/Food_Outlook_June_13.pdf] (consulté le 8 juillet 2015).
- Gao, B., E. Allen, E.L. Davis, T.J. Baum et R.S. Hussey. 2004. Molecular characterisation and developmental expression of cellulose-binding protein gene in soybean cyst nematode Heterodera glycines. Int. J. Parasitol. 34 : 1377-1383.
- Gao, B., R. Allen, T. Maier, E.L. Davis, T.J. Baum et R.S. Hussey. 2003. The parasitome of the phytonematode Heterodera glycines. Mol. Plant-Microbe Interact. 16 : 720-726.
- Gendron St-Marseille, A.-F. 2013. Le nématode à kyste du soja (Heterodera glycines) : enjeux des changements climatiques sur sa distribution, sa reproduction et sur les probabilités de synchronisme avec le soja (Glycines max) au Québec. Université de Sherbrooke, Sherbrooke, Qc, Canada.
- Gregory, P.J., S.N. Johnson, A.C. Newton et J.S. Ingram. 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60 : 2827-2838.
- Grulke, N.E. 2011. The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol. 189 : 8-11.
- Haegeman, A., T. Kyndt et G. Gheysen. 2010. The role of pseudo-endoglucanases in the evolution of nematode cell wall-modifying proteins. J. Mol. Evol. 70 : 441-452.
- Haegeman, A., S. Mantelin, J.T. Jones et G. Gheysen. 2012. Functional roles of effectors of plant-parasitic nematodes. Gene 492 : 19-31.
- Hartman, G.L., E.D. West et T.K. Herman. 2011. Crops that feed the world 2. Soybean – worldwide production, use, and constraints caused by pathogens and pests. Food Security 3 : 5-17.
- Hogenhout, S.A., R.A. Van der Hoorn, R. Terauchi et S. Kamoun. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22 : 115-122.
- Hulme, P.E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46 : 10-18.
- Ithal, N., J. Recknor, D. Nettleton, L. Hearne, T. Maier, T.J. Baum et M.G. Mitchum. 2007. Parallel genome-wide expression profilling of host and pathogen during soybean cyst nematode infection of soybean. Mol. Plant-Microbe Interact. 20 : 293-305.
- Jablonska, B., J.S.S. Ammiraju, K.K. Bhattarai, S. Mantelin, O. Martinez de Ilarduya, P.A. Roberts et I. Kaloshian. 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol. 143 : 1044-1054.
- Kakaire, S., I.G. Grove et P.P.J. Haydock. 2012. Effect of temperature on the life cycle of Heterodera schachtii infecting oilseed rape (Brassica napus L.). Nematology 14 : 855-867.
- Kim, M., D.L. Hyten, A.F. Bent et B.W. Diers. 2010. Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genome 3 : 81-89.
- Klink, V.P., P.D. Matsye, K.S. Lawrence et G.W. Lawrence. 2013. Engineered soybean cyst nematode resistance. Pages 139-172 in H. El-Shemy (éd.), Soybean - pest resistance. InTech, Rijeka, Croatia.
- Klink, V.P., P. Hosseini, M.H. MacDonald, N.W. Alkharouf et B.F. Matthews. 2009. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics 10 : 111.
- Koenning, S.R. 2004. Population biology. Pages 73-88 in D.P. Schmitt, J.A. Wrather et R.D. Riggs (éds.), Biology and management of the soybean cyst nematode, 2nd ed. Schmitt and Associates of Marceline, Marceline, MI, USA.
- Lawn, D.A. et G.R. Noel. 1986. Field interrelationships among Heterodera glycines, Pratylenchus scribneri, and three other nematode species associated with soybean. J. Nematol. 18 : 98-105.
- Lee, D.J., C.S. Kim et G. Schaible. 2006. Estimating the cost of invasive species on U.S. agriculture: The U.S. soybean market. USDA-ARS / UNL Faculty, Lincoln, NE, USA.
- Li, J., J. Faghihi, J.M. Ferris et V.R. Ferris. 1996. The use of RAPD amplified DNA as markers for virulence characteristics in soybean cyst nematode. Fundam. Appl. Nematol. 19 : 143-150.
- Liu, S., P.K. Kandoth, S.D. Warren, G. Yeckel, R. Heinz, J. Alden, C. Yang, A. Jamai, T. El-Mellouki, P.S. Juvale, J. Hill, T.J. Baum, S. Cianzio, S.A. Whitham, D. Korkin, M.G. Mitchum et K. Meksem. 2012. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492 : 256-260.
- Matson, A.L. et L.F. Williams. 1965. Evidence of a fourth gene for resistance to soybean cyst nematode. Crop Sci. 5 : 477.
- Mimee, B., H. Peng, V. Popovic, Q. Yu, M.-O. Duceppe, M.-P. Tetreault et G. Belair. 2014. First report of soybean cyst nematode (Heterodera glycines Ichinohe) on soybean in the Province of Quebec, Canada. Plant Dis. 98 : 429.
- Mittler, R. et E. Blumwald. 2010. Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61 : 443-462.
- Moiroux, J., G. Bourgeois, J. Brodeur, A.-E. Gagnon, A.-F. Gendron St-Marseille et B. Mimee. 2014. Quels enjeux représentent les changements climatiques en lien avec les espèces exotiques envahissantes pour la culture du soya au Québec? Feuillet technique Ouranos, Projet 550012-103, Québec, Qc, Canada.
- Nahar, K., T. Kyndt, Y.B. Nzogela et G. Gheysen. 2012. Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction. New Phytol. 196 : 901-913.
- Newton, A.C., L. Torrance, N. Holden, I.K. Toth, D.E. Cooke, V. Blok et E.M. Gilroy. 2012. Climate change and defense against pathogens in plants. Adv. Appl. Microbiol. 81 : 89-132.
- Niblack, T.L. 2005. Soybean cyst nematode management reconsidered. Plant Dis. 89 : 1020-1026.
- Niblack, T.L., P.R. Arelli, G.R. Noel, C.H. Opperman, J.H. Orf, D.P. Schmitt, J.G. Shannon et G.L. Tylka. 2002. A revised classification scheme for genetically diverse populations of Heterodera glycines. J. Nematol. 34 : 279-288.
- Niblack, T.L., K.N. Lambert et G.L. Tylka. 2006. A model plant pathogen from the kingdom animalia : Heterodera glycines, the soybean cyst nematode. Annu. Rev. Phytopathol. 44 : 283-303.
- Noel, G.R. 2004. Soybean response to infection. Pages 131-151 in D.P. Schmitt, J.A. Wrather et R.D. Riggs (éds.), Biology and management of soybean cyst nematode, 2nd ed. Schmitt and Associates of Marceline, Marceline, MI, USA.
- Oyekanmi, E.O. et B. Fawole. 2010. Nematodes of soybean and their management. Pages 325-344 in G. Singh (éd.), The soybean: botany, production and uses. CAB International, Wallingford, UK.
- Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37 : 637-669.
- Pautasso, M., T.F. Döring, M. Garbelotto, L. Pellis et M.J. Jeger. 2012. Impacts of climate change on plant diseases—opinions and trends. Eur. J. Plant Pathol. 133 : 295-313.
- Perry, R.N. et M. Moens. 2011. Survival of parasitic nematode outside the host. Pages 1-27 in R.N. Perry et D.A. Wharton (éds.), Molecular and physiological basis of nematode survival. CABI Publishing, Wallingford, UK.
- Prasch, C.M. et U. Sonnewald. 2013. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 162 : 1849-1866.
- Ragsdale, D.W., D.A. Landis, J. Brodeur, G.E. Heimpel et N. Desneux. 2011. Ecology and management of the soybean aphid in North America. Annu. Rev. Entomol. 56 : 375-399.
- Rao-Arelli, A.P. 1994. Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis. 78 : 898-900.
- Rogers, H.H., C.M. Peterson, J.N. McCrimmon et J.D. Cure. 1992. Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell Environ. 15 : 749-752.
- Rosso, M.-N., R.S. Hussey, E.L. Davis, G. Smant, T.J. Baum, P. Abad et M.G. Mitchum. 2012. Nematode effector proteins: targets and functions in plant parasitism. Pages 327-354 in F. Martin et S. Kamoun (éds.), Effectors in plant–microbe interactions. John Wiley & Sons, Inc., New York, NY, USA.
- Schmitt, D.P. 2004. Introduction. Pages 1-18. in D.P. Schmitt, J.A. Wrather et R.D. Riggs (éds.). Biology and management of soybean cyst nematode, 2nd ed. Schmitt and Associates of Marceline, Marceline, MI, USA.
- Singh, G. et B.G. Shivakumar. 2010. The role of soybean in agriculture. Pages 24-47 in G. Singh (éd.), The soybean : botany, production and use, 1st ed. CAB International, Wallingford, UK.
- Somasekhar, N. et J.S. Prasad. 2012. Plant–nematode interactions: consequences of climate change. Pages 547-564 in B. Venkateswarlu, A.K. Shanker, C. Shanker et M. Maheswari (éds.), Crop stress and its management: perspectives and strategies. Springer, Houten, The Netherlands.
- Statistics Canada. 2014. Table 001-0010 - Estimated areas, yield, production and average farm price of principal field crops, in metric units, annual. [En ligne], [http://www5.statcan.gc.ca/cansim/a26?id=10010&retrLang=eng&lang=eng] (consulté le 14 juillet 2015).
- Studham, M.E. et G.C. MacIntosh. 2012. Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions. BMC Res. Notes 5 : 392.
- Sun, Y., H. Cao, J. Yin, L. Kang et F. Ge. 2010. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ. 33 : 729-739.
- Sun, Y., J. Yin, H. Cao, C. Li, L. Kang et F. Ge. 2011. Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS ONE 6 : e19751.
- Suzuki, N., R.M. Rivero, V. Shulaev, E. Blumwald et R. Mittler. 2014. Abiotic and biotic stress combinations. New Phytol. 203 : 32-43.
- Sysoeva, M.I., V.V. Lavrova, E.M. Matveeva, E.G. Sherudilo et L.V. Topchieva. 2011. Cross adaptation of potato plants to low temperatures and potato cyst nematode infestation. Russ. J. Plant Physiol. 58 : 999-1004.
- Sysoeva, M.I., E.M. Matveeva, V.V. Lavrova et E.G. Sherudilo. 2012. Potato plant responses to temperature drop and phytonematode infestation under continuous lighting. Acta Hortic. 956 : 621-625.
- Syvertsen, J. et Y. Levy. 2005. Salinity interactions with other abiotic and biotic stresses in citrus. HortTechnology 15 : 100-103.
- Thaler, J.S. et R.M. Bostock. 2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85 : 48-58.
- Tilmon, K.J., E.W. Hodgson, M.E. O’Neal et D.W. Ragsdale. 2011. Biology of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) in the United States. J. Integr. Pest Manag. 2 : 1-7.
- Tylka, G.L. 2012. Soybean cyst nematode field guide – A reference for identifying, scouting for and managing soybean cyst nematode. [En ligne], [https://store.extension.iastate.edu/Product/Soybean-Cyst-Nematode-Field-Guide] (consulté le 15 juillet 2015).
- Tylka, G.L. et C.C. Marett. 2014. Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954 to 2014. Plant Health Prog. 15 : 85-87.
- Upchurch, R.G. et M.E. Ramirez. 2011. Effects of temperature during soybean seed development on defense-related gene expression and fungal pathogen accumulation. Biotechnol. Lett. 33 : 2397-2404.
- Verdejo-Lucas, S., M. Blanco, L. Cortada et F.J. Sorribas. 2013. Resistance of tomato rootstocks to Meloidogyne arenaria and Meloidogyne javanica under intermittent elevated soil temperatures above 28°C. Crop Prot. 46 : 57-62.
- Wang, G., D. Peng, B. Gao, W. Huang, L. Kong, H. Long, P. Peng et H. Jian. 2014. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages. PLoS ONE 9 [En ligne], doi: 10.1371/journal.pone.0091634.
- Wang, J., C. Lee, A. Replogle, S. Joshi, D. Korkin, R.S. Hussey, T.J. Baum, E.L. Davis, X.H. Wang et M.G. Mitchum. 2010. Dual roles for the variable domain in protein traffincking and host-specific recognition of Heterodera glycines CLE Beffector proteins. New Phytol. 187 : 1003-1017.
- Wang, J., T.L. Niblack, J.A. Tremain, W.J. Wiebold, G.L. Tylka, C.C. Marett, G.R. Noel, O. Myers et M.E. Schmidt. 2003. Soybean cyst nematode reduces soybean yield without causing obvious aboveground symptoms. Plant Dis. 87 : 623-628.
- Wrather, J.A., T.R. Anderson, D.M. Arsyad, J. Gai, L.D. Ploper, A. Porta-Puglia, H.H. Ram et J.T. Yorinori. 1997. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Dis. 81 : 107-110.
- Wrather, J.A., T.R. Anderson, D.M. Arsyad, Y. Tan, L.D. Ploper, A. Porta-Puglia, H.H. Ram et J.T. Yorinori. 2001. Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can. J. Plant Pathol. 23 : 115-121.
- Wrather, J.A., G. Shannon, R. Balardin, L. Carregal, R. Escobar, G.K. Gupta, Z. Ma, W. Morel, T. Ploper et A. Tenuta. 2010. Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Prog. [En ligne],
- Yuan, C.P., Y.H. Li, Z.X. Liu, R.X. Guan, R.Z. Chang et L.J. Qiu. 2012. DNA sequence polymorphism of the Rhg4 candidate gene conferring resistance to soybean cyst nematode in Chinese domesticated and wild soybeans. Mol. Breed. 30 : 1155-1162.
- Zheng, J.W., Y.H. Li et S.Y. Chen. 2006. Characterization of the virulence phenotypes of Heterodera glycines in Minnesota. J. Nematol. 38 : 383-390.
- Ziska, L.H. 1998. The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations. Ann. Bot. 81 : 717-721.