Résumés
Abstract
To date, many developing countries such as Iran have almost completely abandoned the idea of decontaminating oil-polluted soils due to the high costs of conventional (physical/chemical) soil remediation methods. Phytoremediation is an emerging green technology that can become a promising solution to the problem of decontaminating hydrocarbon-polluted soils. Screening the capacity of native tolerant plant species to grow on aged, petroleum hydrocarbon-contaminated soils is a key factor for successful phytoremediation. This study investigated the effect of hydrocarbon pollution with an initial concentration of 40 000 ppm on growth characteristics of sorghum (Sorghum bicolor) and common flax (Linum usitatissumum). At the end of the experiment, soil samples in which plant species had grown well were analyzed for total petroleum hydrocarbons (TPHs) removal by GC-FID. Common flax was used for the first time in the history of phytoremediation of oil-contaminated soil. Both species showed promising remediation efficiency in highly contaminated soil; however, petroleum hydrocarbon contamination reduced the growth of the surveyed plants significantly. Sorghum and common flax reduced TPHs concentration by 9500 and 18500 mg kg‑1, respectively, compared with the control treatment.
Keywords:
- Growth parameters,
- hydrocarbon-polluted soil,
- phytoremediation,
- plant
Résumé
À ce jour, plusieurs pays en voie de développement, comme l’Iran, ont presque complètement abandonné l’idée de décontaminer les sols pollués par le pétrole à cause des coûts élevés reliés aux méthodes conventionnelles (physiques/chimiques) de décontamination des sols. La phytoremédiation est une nouvelle technologie verte qui peut s’avérer une solution prometteuse au problème posé par la décontamination des sols pollués par des hydrocarbures. Évaluer la capacité d’espèces indigènes tolérantes à croître sur des sols âgés et pollués par des hydrocarbures de pétrole représente l’une des étapes clé de la phytoremédiation. Au cours de la présente étude, l’effet de la pollution aux hydrocarbures sur les caractéristiques de croissance du sorgho (Sorghum bicolor) et du lin cultivé (Linum usitatissumum) a été évalué à partir d’une concentration initiale de 40 000 ppm. À la fin de d’étude, des échantillons de sols dans lesquels des plantes avaient obtenu un bon taux de croissance ont été analysés à l’aide d’un appareil CG-DIF afin de déterminer les taux d’hydrocarbures pétroliers (THP) totaux enrayés des sols. Le lin cultivé a été utilisé pour la première fois dans l’histoire de la phytoremédiation de sols contaminés par le pétrole. Les deux espèces ont fait preuve d’une efficacité prometteuse dans les sols fortement pollués. Cependant, la pollution par les hydrocarbures de pétrole a réduit de façon significative la croissance des plantes à l’étude. Le sorgho et le lin cultivé ont réduit la concentration en THP de 9 500 et 18 500 mg kg‑1, respectivement, comparativement au traitement témoin.
Mots clés:
- Paramètres de croissance,
- phytoremédiation,
- plante,
- sol contaminé aux hydrocarbures
Parties annexes
References
- Adam, G., and H. Duncan. 2002. Influence of diesel fuel on seed germination. Environ. Pollut. 120 : 363-370.
- Bossert, I., and R. Bartha. 1985. Plant growth on soils with a history of oily sludge disposal. Soil Sci. 140 : 75-77.
- Brandt, R., N. Merkl, R. Schultaze-Krafl, C. Infante, and G. Broll. 2006. Potential of Vetiver (Vetiveria Zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int. J. Phytoremediat. 8 : 273-284.
- Chaineau, D.H., J.L. Morel, and J. Oudot. 1997. Phytotoxicity and plant uptake of fuel oil hydrocarbons. J. Environ. Qual. 26 : 1478-1483.
- Chekol, T., L.R. Vough, and R.L. Chaney. 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ. Int. 30 : 799-804.
- Cunningham, S.D., and D.W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol. 110 : 715-719.
- Escalante-Espinosa, E., M.E. Gallegos-Martınez, E. Favela-Torres, and M. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59 : 405-413.
- Frick, C.M., R.E. Farrell, and J.J. Germida. 1999. Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites. Petroleum technology alliance of Canada, Calgary, Canada. 82 p.
- Gallegos-Martinez, M.G., A.G. Santos, L.G. Cruz, M.A. Garcia, L.Y. Trujillo, Z. Liz, and M. Gutierrez-Rojas. 2000. Diagnostic and resulting approaches to restore petroleum-contaminated soil in a Mexican tropical swamp. Water Sci. Technol. 42 : 377-384.
- Huang, X.D., Y. El-Alawi, D.M. Penrose, B.R. Glick, and B.M. Greenberg. 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. 130 : 465-476.
- Huang, X.D., Y. El-Alawi, J. Gurska, B.R. Glick, and B.M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81 : 139-147.
- Johnson, D.L., D.R. Anderson, and S.P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37 : 2334-2336.
- Joner, E.J., D. Hirmann, O.H.J. Szolar, D. Todorovic, C. Leyval, and A.P. Loibner. 2004. Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environ. Pollut. 128 : 429-435.
- Kamath, R., J.L. Schnoor, and P.I. Alvarez. 2004. Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: implications for PAH biodegradation in the rhizosphere. Environ. Sci. Technol. 38 : 1740-1745.
- Karthikeyan, R., and A. Bhandari. 2001. Anaerobic biotransformation of aromatic and polycyclic aromatic hydrocarbons in soil microcosms: a review. J. Hazard. Subst. Res. 3 : 1-19.
- Khan, A.G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18 : 355-364.
- Li, X., Y. Feng, and N. Sawatsky. 1997. Importance of soil water relations in assessing the endpoint of bioremediated soils. Plant Soil 192 : 219-226.
- Liste, H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31 : 43-52.
- Luepromchai, E., W. Lertthamrongsak, P. Pinphanichakarn, S. Thaniyavarn, K. Pattaragulwanit, and K. Juntongjin. 2007. Biodegradation of PAHs in petroleum-contaminated soil using tamarind leaves as microbial inoculums. Songklanakarin J. Sci. Technol. 29 : 515-527.
- McCutcheon, S.C., and J.L. Schnoor. 2003. Overview of phytotransformation and control of wastes. Pages 1-58 in S.C. McCutcheon and J.L. Schnoor (eds.), Phytoremediation: Transformation and Control of Contaminants. John Wiley & Sons, New Jersey, USA.
- Merkl, N., R. Schultze-Kraft, and C. Infante. 2004a. Phytoremediation of petroleum-contaminated soils in the tropics - Pre-selection of plant species from eastern Venezuela. J. Appl. Bot. Food Qual. 78 : 185-192.
- Merkl, N., R. Schultze-Kraft, and C. Infante. 2004b. Phytoremediation in the tropics - The effect of crude oil on the growth of tropical plants. Bioremediat. J. 8 : 177-184.
- Merkl, N., R. Schultze-Kraft, and C. Infante. 2005. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut. 165 : 195-209.
- Mueller, K.E., and J.R. Shann. 2006. PAH dissipation in spiked soil: Impacts of bioavailability, microbial activity, and trees. Chemosphere 64 : 1006-1014.
- Parrish, Z.D., M.K. Banks, and A.P. Schwab. 2005. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ. Pollut. 137 : 187-197.
- Salanitro, J.P., P.B. Dorn, M.H. Hueseman, K.O. Moore, I.A. Rhodes, L.M. Jackson, T.E. Vipond, M.M. Western, and H.L. Wisniewksi. 1997. Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Technol. 31 : 1769-1776.
- Tahooni, S. 2000. Principles of Foundation Engineering. Pars Aain Press, Tehran. 934 p.
- Tejada, M., J.L. Gonzalez, M.T. Hernandez, and C. Garcia. 2008. Application of different organic amendments in a gasoline contaminated soil: Effect on soil microbial properties. Bioresour. Technol. 99 : 2872-2880.
- Tesar, M., T.G. Reichenauer, and A. Sessitsch. 2002. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol. Biochem. 34 : 1883-1892.
- Tischer, S., and Hubner, T. 2002. Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int. J. Phytoremediat. 4 : 187-203.
- US EPA. 1998. Test Methods for Evaluating Solid Waste, Physical Chemical Methods. Environmental Protection Agency, Washington, DC.
- US EPA. 2000. Introduction to phytoremediation. Environmental Protection Agency, USA. Page 5.
- Wiltse, C.C., W.L. Rooney, Z. Chen, A.P. Schwab, and M.K. Banks. 1998. Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J. Environ. Qual. 27 : 169-173.
- Xu, J.G., and R.L. Johnson. 1997. Nitrogen dynamics in soils with different hydrocarbon contents planted to barley and field pea. Can. J. Soil Sci. 77 : 453-458.