Résumés
Résumé
Le copépode calanoïde Eurytemora affinis est un complexe d’espèces clés des réseaux trophiques estuariens. En dominant les communautés planctoniques dans la plupart des estuaires de l’hémisphère nord, E. affinis permet un transfert d’énergies vers les niveaux trophiques supérieurs. Il influence directement le recrutement des espèces de poissons et constitue une espèce clé des zones d’alevinage. E. affinis est en réalité un complexe d’espèces cryptiques composé de 6 clades morphologiquement similaires, mais possédant des histoires évolutives distinctes. Dans la zone de transition estuarienne du Saint-Laurent, 2 clades (Atlantique et Nord-Atlantique) sympatriques, spatialement ségrégués, dominent la communauté zooplanctonique. Chacun des 2 clades semble exploiter différents types d’habitats en fonction de sa tolérance physiologique à la salinité et à la disponibilité de nourriture. Nous discuterons des études récentes en mettant l’accent sur la répartition, la différenciation génétique, mais aussi l’écologique de ces espèces du complexe d’E. affinis afin de mieux comprendre leurs influences respectives sur le fonctionnement et la productivité de l’écosystème unique que représente la zone d’alevinage de l’estuaire du Saint-Laurent.
Mots-clés :
- copépode,
- écophysiologie,
- marqueurs trophiques,
- zooplancton,
- Québec
Abstract
The calanoid copepod Eurytemora affinis is a cryptic species complex composed of 6 genetically distinct but morphologically similar clades. These dominate planktonic communities, and are considered the keystone species of many estuarine food webs in the northern hemisphere, channeling carbon and energy to higher trophic levels. In doing so, they directly influence the recruitment of many fish species. The Atlantic and the North-Atlantic clades co-occur in the St. Lawrence estuarine transition zone (Québec, Canada), but their distribution is spatially segregated. Both clades exploit various habitats depending on their physiological tolerance to salinity and resource availability favouring niche partitioning. In this review, we discuss recent studies on E. affinis, focussing on distribution patterns, and the ecological and genetic differentiation of co-occurring clades. The aim is to provide a clearer understanding of the influence of this species complex on productivity and ecosystem functioning in the St. Lawrence estuarine transition zone, which is an important fish nursery.
Keywords:
- copepod,
- ecophysiology,
- Québec,
- trophic markers,
- zooplankton
Parties annexes
Bibliographie
- Alekseev, V.R. et A. Souissi, 2011. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa, 2767 : 41-56.
- Barnard, C., C. Martineau, J.-J. Frenette, J.-J. Dodson et V.-F. Warwick, 2006. Trophic position of zebra mussel veligers and their use of dissolved organic carbon. Limnology and Oceanogry, 51 : 1473-1484.
- Beyrend-Dur, D., S. Souissi , D. Devreker, G. Winkler et J.-S. Hwang, 2009. Life cycle traits of two transatlantic populations on Eurytemora affinis (Copepoda, Calanoida): Salinity effect. Journal of Plankton Research, 31 : 713-728.
- Bilton, D.T., J. Paula et J.D.D. Bishop, 2002. Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science, 55 : 937-952.
- Boak, A.C. et R. Goulder, 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber estuary. Marine Biology, 73 : 139-149.
- Bousfield, E.L., G. Filteau, M. O’Neil et P. Gentes, 1975. Population dynamics of zooplankton in the middle St. Lawrence estuary. Estuary Research, 1 : 325-351.
- Budge, S.M. et C.-C. Parrish, 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. Fatty acids and Organic Geochemistry, 29 : 1547-1559.
- Cabrol, J., 2013. Étude de l’alimentation et de la condition physiologique du complexe d’espèces cryptiques d’Eurytemora affinis dans la zone de transition estuarienne du Saint-Laurent. Mémoire de maîtrise, Université du Québec à Rimouski, Rimouski, 148 p.
- Cabrol, J., G. Winkler et R. Tremblay, 2015. Physiological condition and differential feeding behaviour in the cryptic species complex Eurytemora affinis in the St. Lawrence estuary. Journal of Plankton Research, 37 : 372-387.
- Chew, L.W., V.-C. Chong, K. Tanaka et A. Sasekumar, 2012. Phytoplankton fuels? The energy flow from zooplankton to small nekton in turbid mangrove waters. Marine Ecology Progress Series, 469 : 7-24.
- Cloern, J.E., 2007. Habitat connectivity and ecosystem productivity: Implications from a simple model. American Naturalist, 169 : E21-E33.
- Couillard, M., G. Cabana, J. Dery, G. Daigle et J.J. Dodson, 2011. Ontogenetic habitat shifts of the Atlantic tomcod (Microgadus tomcod) across an estuarine transition zone. Estuaries and Coasts, 34 : 1234-1245.
- Dalsgaard, J., M. St-John, G. Kattner, D.Müller-Navarra et W. Hagen, 2003. Fatty acid trophic markers in the pelagic marine environment: A review. Advances in Marine Biology, 46 : 225-340.
- David, V., B. Sautour et P. Chardy, 2007. The paradox between the long-term decrease of egg mass size of the calanoid copepod Eurytemora affinis and its long-term constant abundance in a highly turbid estuary (Gironde estuary, France). Journal of Plankton Research, 29 : 377-389.
- Devreker, D., S. Souissi, J.-C. Molinero, D. Beyrend-Dur, F. Gomez et J. Forget-Leray, 2010. Tidal and annual variability of the population structure of Eurytemoraaffinis in the middle part of the Seine estuary during 2005. Estuaries Coastal and Shelf Science, 89 : 245-255.
- Dodson, J.-J., J.-C.Dauvin, G.-R. Ingram et B. D’Andlejan, 1989. Abundance of larval rainbow smelt (Osmerusmordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the Middle St. Lawrence Estuary. Estuaries, 12 : 66-81.
- Fahl, K. et G. Kattner, 1993. Lipid-content and fatty-acid composition of algal communities in sea-ice and water from the Weddell sea (Antartica). Polar Biology, 13 : 405-409.
- Favier, J.-B., 2013. Détermination de la niche écologique du complexe d’espèces Eurytemoraaffinis dans la zone de transition estuarienne du Saint-Laurent. Mémoire de maîtrise, Université du Québec à Rimouski, Rimouski, 124 p.
- Favier, J.-B. et G. Winkler, 2014. Coexistence, distribution patterns and habitat utilization of the sibling species complex Eurytemoraaffinis in the St. Lawrence estuarine transition zone. Journal of Plankton Research, 36 : 1247-1261.
- Feike, M. et R. Heerkloss, 2009. Does Eurytemoraaffinis (Copepoda) control the population growth of Keratellacochlearis (Rotifera) in the brackish water Darβ – Zingst Lagoon (southern Baltic Sea)? Journal of Plankton Research, 31 : 571-576.
- Frederiksen, M., M. Edwards, A.-J. Richardson, N.-C. Halliday et S. Wanless, 2006. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology, 75 : 1259-1268.
- Frenette, J.-J., W.-F. Vincent, J.-J. Dodson et C. Lovejoy, 1995. Size-dependent variations in phytoplankton and protozoan community structure across the St. Lawrence transition region. Marine Ecology Progress Series, 120 : 99-110.
- Galap, C., P. Netchitailo et F. Leboulenfer, 1999. Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymerisglycymeris L., Mollusca, Bivalvia) during the annual cycle. Comparative Biochemistry and Physiology, 122 : 241-254.
- Gasparini, S. et J. Castel, 1997. Autotrophic and heterotrophic nanoplankton in the diet of the estuarine copepods Eurytemora affinis and Acartia bifilosa. Journal of Plankton Research, 19 : 877-890.
- Hammock, B.G., S. Lesmeister, I. Flores, G.S. Bradburd, F.H. Hammock et S.J. Teh, 2016. Low food availability narrows the tolerance of the copepod Eurytemoraaffinis to salinity, but not to temperature. Estuaries and Coasts, 39 : 189-200.
- Hardin, G., 1960. The competitive exclusion principle. Science, 131 : 1292-1297.
- Heinle, D.-R., R.-P. Harris, J.-F. Ustach et D.-A. Flemer, 1977. Detritus as food for estuarine copepods. Marine Biology, 40 : 341-353.
- Hoffman, J.C., D.-A. Bronk et J.-E. Olney, 2008. Organic matter sources supporting lower food web production in the tidal freshwater portion of the York River estuary, Virginia. Estuaries and Coasts, 31 : 898-911.
- Hough, A.-R, et E. Naylor, 1992. Endogenous rhythms of circatidal swimming activity in the estuarine copepod Eurytemoraaffinis. Journal of Experimental Marine Biology and Ecology, 161 : 27-32.
- Hughes, J.-E., L.-A. Deegan, B.-J. Peterson, R.-M. Holmes et B. Fry, 2000. Nitrogen flow through the food web in the oligohaline. Ecology, 81 : 433-452.
- Hutchinson, G.-E., 1961. The paradox of the plankton. American Naturalist, 95 : 137-145.
- Jeffries, I-I.-P., 1962. Salinity-space distribution of the estuarine copepod genus Eurytemora. International Revue of Hydrobiology, 47 : 291-300.
- Johns, R.B., P.-D. Nichols et G.-J. Perry, 1979. Fatty acid composition of ten marine algae from Australian water. Phytochemistry, 18 : 799-802.
- Kimmel, D.-G., W.-D. Miller et M.-R. Roman, 2006. Regional scale climate forcing of mesozooplankton dynamics in Chesapeake Bay. Estuaries and Coasts, 29 : 375-387.
- Kimmerer, W.-J., J.-R. Burau et W.-A. Bennett, 1998. Tidally-oriented vertical migration and position maintenance of zooplankton in a temperate estuary. Limnology and Oceanography, 43 : 1697-1709.
- Knowlton, N., 1993. Sibling species in the sea. Annual Review of Ecology, Evolution and Systematics, 24 : 189-216.
- Knowlton, N., 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420 : 73-90.
- Laakmann, S., H. Auel et M. Kochzius, 2012. Evolution in the deep sea: Biological traits, ecology and phylogenetics of pelagic copepods. Molecular Phylogenetics and Evolution, 65 : 535-546.
- Langdon, C.-J. et M.-I. Waldock, 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostreagigasspat. Journal of the Marine Biological Association of the UK, 61 : 431-440.
- Laprise, R. et J.-J. Dodson, 1990. The mechanism of retention of pelagic tomcod, Microgadustomcod, larvae and juveniles in the well-mixed part of the St. Lawrence Estuary. Environmental Biology of Fishes, 29 : 293-302.
- Laprise, R. et J.-J. Dodson, 1994. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Marine Ecology Progress Series, 107 : 67-81.
- Lecomte, F. et J.-J. Dodson, 2004. Role of early life-history constraints and resource polymorphism in the segregation of sympatric populations of an estuarine fish. Evolutionary Ecology Research, 6 : 631-658.
- Lecomte, F. et J.-J. Dodson, 2005. Distinguishing trophic and habitat partitioning among sympatric populations of the estuarine fish Osmerusmordax Mitchill. Journal of Fish Biology, 66 : 1601-1623.
- Lee, C.-E., 1999. Rapid and repeated invasions of fresh water by the copepod Eurytemoraaffinis. Evolution, 53 : 1423-1434.
- Lee, C.-E., 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate "populations." Evolution, 54 : 2014-2027.
- Lee, C.-E. et B.-W. Frost, 2002. Morphological stasis in the Eurytemoraaffinis species complex (Copepoda: Temoridae). Hydrobiologia, 480 : 111-128.
- Lee, C.-E. et C.-H. Petersen, 2002. Genotype-by-environment interaction for salinity tolerance in the freshwater invading copepod Eurytemoraaffinis. Physiological and Biochemical Zoology, 75 : 335-344.
- Lee, C.-E. et C.-H. Peterson, 2003. Effect of developmental acclimation on adult salinity tolerance in the freshwater-invading copepod Eurytemoraaffinis. Physiological and Biochemical Zoology, 76 : 296-301.
- Lee, C.-E., M. Kiergaard, G.-W. Gelembiuk, B.-D. Eads et M. Posavi, 2011. Pumping ions: Rapid parallel evolution of ionic regulation following habitat invasions. Evolution, 65 : 2229-2244.
- Lee, C.-E., M. Posavi et G. Charmantier, 2012. Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. Journal of Evolutionary Biology, 25 : 625-633.
- Lee, C.-E., W.-E. Moss, N. Olson, C.-K. Fongching, Y.-M. Chang et K.-E. Johnson, 2013. Feasting in fresh water: Impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats. Evolutionary Applications, 6 : 673-689.
- Martineau, C., W.-F. Vincent, J.-J. Frenette et J.-J. Dodson, 2004. Primary consumers and particulate organic matter: Isotopic evidence of strong selectivity in the estuarine transition zone. Limnology and Oceanography, 49 : 1679-1686.
- Martino, E.-J. et E.-D. Houde, 2010. Recruitment of striped bass in Chesapeake Bay: Spatial and temporal environmental variability and availability of zooplankton prey. Marine Ecology Progress Series, 409 : 213-228, doi :10.3354/meps08586.
- McCutchan, J.-H., W.-M. Lewis, C. Kendall et C.-C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102 : 378-390.
- Meziane, T., L. Bodineau, C. Retière et G. Thournelin, 1997. The use of lipid markers to examine sources of organic matter and its incorporation into food web of the intertidal salt marsh-flat ecosystem, Mont Saint Michel Bay, France. Journal of Sea Research, 38 : 47-58.
- Meziane, T., F. D’Agata et S.-Y. Lee, 2006. Fate of mangrove organic matter along a subtropical estuary : Small-scale exportation and contribution to the food of crab communities. Marine Ecology Progress Series, 312 : 15-27.
- Mouny, P., J.-C. Dauvin, C. Bessineton, B. Elkaim et S. Simon, 1998. Biological components from the Seine estuary: First results. Hydrobiologia, 374 : 333-347.
- Napolitano, G.-E., R.-J. Pollero, A.-M. Gayoso, B.A. MacDonald et R.J. Thompson, 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology, 25 : 739-755.
- Pauly, D., V. Christensen, V. Dalsgaard, R. Froese et F. Torres Jr, 1998. Fishing down marine food webs. Science, 279 : 860-863.
- Perry, G.J., J.K Volkman, R.B. Johns et H.J. Bavor, 1979. Fatty acids of bacterial origin in contemporary marine sediments. Geochimica et Cosmochimica Acta, 43 : 1715-1725.
- Pommier, J., J.-J. Frenette et H. Glémet, 2010. Relating RNA:DNA ratio in Eurytemoraaffinis to seston fatty acids in a highly dynamic environment. Marine Ecology Progress Series, 400 : 143-154.
- Runge, J.-A. et Y. Simard, 1990. Zooplankton of the St. Lawrence estuary: The imprint of physical processes on its composition distribution. Dans : El-Sabh M.I. et N. Silverberg (édit.). Oceanography of a large-scale estuarine system: The St. Lawrence. Springer, New York, Coastal and Estuary Studies, 39, p. 296-320.
- Schmitt, F.G., D. Devreker, G. Dur et S. Souissi, 2011. Direct evidence of tidally oriented behavior of the copepod Eurytemoraaffinis in the Seine estuary. Ecological research, 26 : 773-780.
- Schluter, D., 2001. Ecology and the origin of species. Trends in Ecology & Evolution, 16 : 372-380.
- Simons, R.-D., S.-G. Monismith, L.-E. Johnson, G. Winkler et F.-J. Saucier, 2006. Zooplankton retention in the estuarine transition zone of the St. Lawrence estuary. Limnology and Oceanography, 51 : 2621-2631.
- Simons, R.-D., S.-G. Monismith, F.-J. Saucier, L.-E. Johnson et G. Winkler, 2010. Modeling stratification and baroclinic flow in the estuarine transition zone of the St. Lawrence Estuary. Atmosphere-Ocean, 48 : 132-146.
- Sirois, P. et J.-J. Dodson, 2000. Influence of turbidity, food density and parasites on the ingestion and growth of larval rainbow smelt Osmerusmordax in an estuarine turbidity maximum. Marine Ecology Progress Series, 193 : 167-179.
- Slater, S.-B. et R.-D. Baxter, 2014. Diet, prey selection, and body condition of age-0 Delta Smelt, Hypomesustranspacificus, in the Upper San Francisco Estuary. San Francisco Estuary and Watershed Science, 12 : 1-24.
- Souissi, A., S. Souissi et B.W. Hansen, 2014. Physiological improvement in the copepod Eurytemora affinis through thermal and multi‐generational selection. Aquaculture Research, DOI: 10.1111/are.12675.
- St-Onge-Drouin, S., G. Winkler, J.-F. Dumais et S. Senneville, 2014. Hydrodynamics and spatial separation between two clades of a copepod species complex. Journal of Marine Systems, 129 : 334–342. doi : 10.1016/j.jmarsys.2013.07.014.
- Tackx, M.-L.-M., P.-J.-M. Herman, S. Gasparini, X. Irigoien, R. Billiones et M.-H. Daro, 2003. Selective feeding of Eurytemoraaffinis (Copepoda, Calanoida) in temperate estuaries: Model and field observations. Estuarine Coastal and Shelf Science, 56 : 305-311.
- Tackx, M.-L.-M., N. de Pauw, R. van Mieghem, F. Azémar, A. Hannouti, S. vanDamme, F. Fiers, N. Daro et P. Meire, 2004. Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal patterns. Journal of Plankton Research, 26 : 133-141.
- Vincent, W.-F. et J.-J. Dodson, 1999. The St. Lawrence River, Canada-USA: The need for an ecosystem-level understanding of large rivers. Japanese Journal of Limnology, 60 : 29-50.
- Volkman, J.-K., S.-W. Jeffrey, P.-D. Nichols, G.-I. Rogers et C.-D. Garland, 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128 : 219-240.
- Wainwright, P.C. et S.M. Reilly, 1994. Ecological morphology: Integrative organismal biology. University of Chicago Press, Chicago, 376 p.
- Winkler, G., J.-J. Dodson, N. Bertrand, D. Thivierge et W.-F. Vincent, 2003. Trophic coupling across the St. Lawrence River estuarine transition zone. Marine Ecology Progress Series, 251 : 59-73.
- Winkler, G., P. Sirois, L.-E. Johnson et J.-J. Dodson, 2005. Invasion of an estuarine transition zone by Dreissenapolymorpha veligers had no detectable effect on zooplankton community structure. Canadian Journal of Fisheries and Aquatic Sciences, 62 : 578-592.
- Winkler, G., C. Martineau, J.-J. Dodson, W.-F. Vincent et L.-E. Johnson, 2007. Trophic dynamics of two sympatric mysid species in an estuarine transition zone. Marine Ecology Progress Series, 332 : 171-187.
- Winkler, G., J.-J. Dodson et C.-E. Lee, 2008. Heterogeneity within the native range: Population genetic analyses of sympatric invasive and non-invasive clades of the freshwater invading Eurytemoraaffinis. Molecular Ecology, 17 : 415-430.
- Yoneyama, H., 2004. Impact écologique des larves de la moule zébrée (Dreissenapolymorpha) sur les larves de poisson de la zone de turbidité maximale de l’estuaire du Saint-Laurent. Mémoire de maîtrise, Université Laval, Québec, 54 p.