Résumés
Résumé
Au cours des deux dernières décennies, l’immunologie des tumeurs a connu un réel bouleversement et un foisonnement de découvertes fondamentales qui se sont traduites en applications cliniques. On peut notamment citer l’identification des antigènes de rejet tumoral et des fondements moléculaires et cellulaires de l’immunogénicité et de la tolérance, la connaissance fine de l’immunité innée, l’élucidation de la biologie des cellules dendritiques et une certaine compréhension des mécanismes d’échappement tumoral à l’immuno-surveillance. Ainsi, l’émergence de nouveaux concepts a fait de l’immunothérapie une quatrième modalité de traitement du cancer après les traitements conventionnels. Les acquis fondamentaux ont facilité la reconceptualisation de l’immunothérapie du cancer, qui a connu un élan majeur en devenant de plus en plus spécifique : au cours des dernières années, l’immunothérapie non spécifique, fondée sur le dopage non spécifique du système immunitaire du patient, a laissé place aux approches vaccinales antitumorales peptidiques et cellulaires. Malgré des résultats encourageants obtenus à partir des modèles expérimentaux et des résultats, certes modestes, obtenus chez les patients, plusieurs obstacles inhérents persistent, notamment celui du décryptage du conflit entre le système immunitaire et le micro-environnement tumoral.
Summary
The notion that the immune system regulates cancer development is now well established. An overwhelming amount of data from animal models, together with compelling data from human patients, indicate that the immune system is instrumental in scanning and irradicating tumors. Analysis of individuals with congenital or acquired immunodeficiencies or patients undergoing immunosuppressive therapy has documented a highly elevated incidence of virally induced malignancies and cancers compared with immunocompetent individuals [1-3]. During the last decade, thanks to the breakthoughts in understanding the molecular mechanisms responsible for immune activation, the tumor antigen identification, the dendritic cell biology, the immunogenecity of tumors, the immune escape mechanisms, the host-tumor relationship, we are facing a new area of tumor immunotherapy. The basic advances were translated in therapeutical applications and have changed the view of immunotherapy from "a dream scenario" to a clinical fourth modality to cancer treatments. Multiple cancer trials using active immunization with vaccines or adoptive immunotherapy have been conducted with only very limited success. There are still a number of issues that still need to be resolved including a better understanding of immune escape mechanisms. Cancer vaccines continue to be evaluated and may lead to the emergence of clinically useful new treatments. A comprehensive approach to define the intricate molecular program initiated by tumor cells to resist to escape and the immune system of the host may help in breaking down the barriers to a more adapted cancer immunotherapy.
Parties annexes
Références
- 1. Boshoff C, Weiss R. AIDS-related malignancies. Nat Rev Cancer 2002 ; 2 : 373-82.
- 2. Gatti RA, Good RA. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 1971 ; 28 : 89-98.
- 3. Penn I, Starzl TE. Malignant lymphomas in transplantation patients : a review of the world experience. Int Z Klin Pharmakol Ther Toxikol 1970 ; 3 : 49-54.
- 4. Lejeune FJ. High dose recombinant tumour necrosis factor (rTNF alpha) administered by isolation perfusion for advanced tumours of the limbs : a model for biochemotherapy of cancer. Eur J Cancer1995 ; 31A : 1009-16.
- 5. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy : moving beyond current vaccines. Nat Med 2004 ; 10 : 909-15.
- 6. Pardoll D. Does the immune system see tumors as foreign or self ? Annu Rev Immunol 2003 ; 21 : 807-39.
- 7. Van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991 ; 254 : 1643-7.
- 8. Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today 1997 ; 18 : 267-8.
- 9. Echchakir H, Mami-Chouaib F, Vergnon I, et al. A point mutation in the alpha-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res 2001 ; 61 : 4078-83.
- 10. Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001 ; 19 : 47-64.
- 11. Spiotto MT, Yu P, Rowley DA, et al. Increasing tumor antigen expression overcomes « ignorance » to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 2002 ; 17 : 737-47.
- 12. Huang AY, Golumbek P, Ahmadzadeh M, et al. Bone marrow-derived cells present MHC class I-restricted tumour antigens in priming of antitumour immune responses. Ciba Found Symp 1994 ; 187 : 229-44.
- 13. Huang AY, Bruce AT, Pardoll DM, et al.In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity 1996 ; 4 : 349-55.
- 14. Gong J, Apostolopoulos V, Chen D, et al. Selection and characterization of MUC1-specific CD8+ T cells from MUC1 transgenic mice immunized with dendritic-carcinoma fusion cells. Immunology 2000 ; 101 : 316-24.
- 15. Restifo NP, Ying H, Hwang L, et al. The promise of nucleic acid vaccines. Gene Ther 2000 ; 7 : 89-92.
- 16. Marshall JL, Hoyer RJ, Toomey MA, et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 2000 ; 18 : 3964-73.
- 17. Rosenberg SA, Zhai Y, Yang JC, et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 1998 ; 90 : 1894-900.
- 18. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002 ; 298 : 850-4.
- 19. Russell JH, White CL, Loh DY, et al. Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc Natl Acad Sci USA 1991 ; 88 : 2151-5.
- 20. Rosenberg SA. Shedding light on immunotherapy for cancer. N Engl J Med 2004 ; 350 : 1461-3.
- 21. Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005 ; 353 : 2654-66.
- 22. Abouzahr S, Bismuth G, Gaudin, C, et al. Identification of target actin content and polymerization status as a mechanism of tumor resistance after cytolytic T lymphocyte pressure. Proc Natl Acad Sci USA 2006 ; 103 : 1428-33.
- 23. Chouaib S. Integrating the quality of the cytotoxic response and tumor susceptibility into the design of protective vaccines in tumor immunotherapy. J Clin Invest 2003 ; 111 : 595-7.
- 24. Dong J, Grunstein J, Tejada M, et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 2004 ; 23 : 2800-10.
- 25. Polverini PJ, Leibovich SJ. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab Invest 1984 ; 51 : 635-42.
- 26. Silzle T, Randolph GJ, Kreutz M, et al. The fibroblast : sentinel cell and local immune modulator in tumor tissue. Int J Cancer 2004 ; 108 : 173-80.
- 27. Perdrizet GA, Kaneko H, Buckley TM, et al. Heat shock protects pig kidneys against warm ischemic injury. Transplant Proc 1990 ; 22 : 460-1.