Résumés
Résumé
Une réponse immune exagérée, incontrôlée et le plus souvent fatale, connue sous le nom de syndrome hémophagocytaire (SH), est associée à un défaut de la fonction cytotoxique des lymphocytes T et natural killer (NK). Les anomalies moléculaires responsables, qui sont multiples, mettent en cause dans la plupart des cas un effecteur indispensable au fonctionnement de la machinerie lytique des lymphocytes. L’étude des lymphocytes cytotoxiques déficients en l’un ou l’autre de ces effecteurs apporte des éléments nouveaux quant à l’agencement des étapes clés de la sécrétion du contenu des granules lytiques au contact de la cellule cible. Des mécanismes moléculaires proches semblent contrôler la sécrétion vésiculaire au niveau des synapses immunologique et neurologique. D’autres effecteurs de la cytotoxicité ou du contrôle de l’homéostasie lymphocytaire à l’origine de SH doivent encore être caractérisés. Quant aux mécanismes précis de l’intervention de cette voie cytotoxique dans le maintien de l’homéostasie lymphocytaire (terminaison d’une réponse immune), ils demeurent à élucider.
Summary
An in vivo disturbance of lymphocyte homeostasis occurs during the course of the hemophagocytic syndrome (HS). HS is a severe and often fatal syndrome resulting from potent and uncontrolled activation and proliferation of T-lymphocytes, mainly polyclonal CD8 lymphocytes, leading to excessive macrophage activation, high level of proinflammatory cytokine production and multiple deleterious effects. The onset of HS characterizes several inherited disorders in humans. In most of these conditions, the molecular defect impairs the granule-dependent cytotoxic activity of lymphocytes, thus highlighting the determinant role of this function in driving back the immune system to a state of equilibrium following infection. Several lines of evidence suggest that an increase in the expansion phase rather than a decrease in the contraction phase of the CD8+ T cells population characterizes the HS. Failure to kill antigen presenting cells through a transaction mechanism of cytotoxic cells should favor a sustained response, although the mechanism may be more complex than simple decrease of antigen load. Defect in the granule dependent cytotoxic function of lymphocytes result from perforin mutation in familial hemophagocytic lymphohistiocytosis type 2, from Munc13-4 (UNC13D) mutation in familial hemophagocytic lymphohistiocytosis type 3, from Rab27a mutation in Griscelli syndrome type 2, and from CHS/LYST mutation in Chediak-Higashi syndrome. The characterization of the molecular causes leading to these conditions identified Rab27a and Munc13-4 as two critical effectors of the exocytic machinery, required for the terminal transport/docking or priming of the cytotoxic granules, respectively. Different members of the Rab and Munc13 family of proteins are also used in neurotransmitter release at the neurological synapse, highlighting the similarity of the mechanisms regulating both secretory pathways. Future investigations regarding HS will continue to elucidate this exocytic pathway machinery and improve our understanding of how it finely regulates the immune response, an area that is likely to be useful for therapeutic intervention.
Parties annexes
Références
- 1. Menasche G, Feldmann J, Fischer A, de Saint Basile G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol Rev 2005 ; 203 : 165-79.
- 2. Henter JI, Elinder G, Soder O, et al. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 1991 ; 78 : 2918-22.
- 3. Ouachee-Chardin M, Elie C, de Saint Basile G, et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis : a single-center report of 48 patients. Pediatrics 2006 ; 117 : e743-50.
- 4. Stepp S, Dufourcq-Lagelouse R, Le Deist F, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 1999 ; 286 : 1957-9.
- 5. Matloubian M, Suresh M, Glass A, et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J Virol 1999 ; 73 : 2527-36.
- 6. Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH) : CD8+ T cells and interferon gamma are essential for the disorder. Blood 2004 ; 104 : 735-43.
- 7. Badovinac VP, Harty JT. CD8(+) T-cell homeostasis after infection : setting the « curve ». Microbes Infect 2002 ; 4 : 441-7.
- 8. Kagi D, Odermatt B, Mak TW. Homeostatic regulation of CD8+ T cells by perforin.Eur J Immunol 1999 ; 29 : 3262-72.
- 9. Huang JF, Yang Y, Sepulveda H, et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 1999 ; 286 : 952-4.
- 10. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001 ; 15 : 751-61.
- 11. Hudrisier D, Riond J, Mazarguil H, et al. Cutting edge : CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol 2001 ; 166 : 3645-9.
- 12. Grossman WJ, Verbsky JW, Barchet W, et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death.Immunity 2004 ; 21 : 589-601.
- 13. Nagle DL, Karim MA, Woolf EA, et al. Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat Genet 1996 ; 14 : 307-11.
- 14. Tardieu M, Lacroix C, Neven B, et al. Progressive neurologic dysfunctions 20 years after allogeneic bone marrow transplantation for Chediak-Higashi syndrome. Blood 2005 ; 106 : 40-2.
- 15. Menasche G, Pastural E, Feldmann J, et al. Mutations in Rab27a cause Griscelli syndrome associated with hemophagocytic syndrome.Nat Genet 2000 ; 25 : 173-6.
- 16. Bahadoran P, Aberdam E, Mantoux F, et al. Rab27a. A key to melanosome transport in human melanocytes. J Cell Biol 2001 ; 152 : 843-50.
- 17. Menasche G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 2003 ; 112 : 450-6.
- 18. Pastural E, Barrat FJ, Dufourcq-Lagelouse R, et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 1997 ; 16 : 289-92.
- 19. Feldmann J, Callebaut I, Raposo G, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3).Cell 2003 ; 115 : 461-73.
- 20. Rosenmund C, Sigler A, Augustin I, et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 2002 ; 33 : 411-24.
- 21. zur Stadt U, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet 2005 ; 14 : 827-34.
- 22. Betz A, Thakur P, Junge HJ, et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 2001 ; 30 : 183-96.
- 23. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2001 ; 2 : 98-106.
- 24. Richmond JE, Weimer RM, Jorgensen EM. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 2001 ; 412 : 338-41.
- 25. Shirakawa R, Higashi T, Kondo H, et al. Purification and functional analysis of a Rab27 effector munc 13-4 using a semi-intact platelet dense-granule secretion assay.Meth Enzymol 2005 ; 403 : 778-88.
- 26. Henter JI, Chow CB, Leung CW, Lau YL. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet 2006 ; 367 : 870-3.
- 27. Hsieh SM, Chang SC. Cutting edge : insufficient perforin expression in CD8+ T cells in response to hemagglutinin from avian influenza (H5N1) virus. J Immunol 2006 ; 176 : 4530-3.