Résumés
Résumé
La cellule est un univers dynamique et compartimenté où interagissent une multitude de sous composants à l’échelle nanométrique. Afin d’étudier l’organisation subcellulaire, il est devenu nécessaire de posséder des outils permettant une manipulation directe extrêmement précise et non invasive. L’avènement des lasers à impulsions, dès les années 60, a conduit à la naissance de la chirurgie au laser. Aujourd’hui, la réduction des impulsions laser en dessous de la nanoseconde permet de mieux comprendre leur interaction avec les tissus biologiques et de contrôler des interventions chirurgicales à une résolution de l’ordre de quelques centaines de nanomètres. Utilisant l’ionisation de la matière par la lumière, cette nanochirurgie laser permet d’effectuer des interventions chirurgicales intracellulaires telles que la découpe de microtubules ou de fibres de tension, sans endommager les structures environnantes ou compromettre la viabilité cellulaire. Ainsi, l’utilisation de lasers à impulsions ultra-courtes, plus précis et puissants, offre une nouvelle approche pour l’étude des forces en biologie ou pour la quantification de la dynamique du cytosquelette.
Summary
Since their first use in the early 60’s, pulsed lasers have become increasingly popular for their ability to ablate biological tissue. Short laser pulses allow high precision surgery for biological and medical applications with minimal invasiveness. Performing highly targeted manipulation and ablation allows experiments impossible so far in development biology, cellular biology or even assisted reproductive technologies and laser surgery has been increasingly used over the last five years to answer key questions in Biology. Recently, picosecond UV and femtosecond IR laser pulses have been used to cleave microtubules and to severe actin stress fibers in vivo with a spatial precision in the submicrometer range to study their dynamics without affecting cell viability. We review recent findings on the underlying principles of pulsed laser nanosurgery mechanisms showing how the use of ultra short laser pulses increases precision and non-invasiveness of laser surgery. We show how the understanding of the surgical process allows one to distinguish between single cell ablation in living organisms or intracellular nanosurgery in living cells and we review recent applications to the study of forces and the quantification of cytoskeleton dynamics.
Parties annexes
Références
- 1. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 2003 ; 103 : 577-644.
- 2. Niemz M. Laser-tissue interactions. Fundamentals and applications, 2nd ed. Berlin : Springer Biological and Medical Physics Series, 2002.
- 3. Brunetaud JM, Mordon S, Desmettre T, Beacco C. In : Fabre C, Pocholle JP, eds. Les lasers et leurs applications scientifiques et médicales. Les Ulis : EDP Sciences, 1996-2002.
- 4. Colombelli J, Reynaud EG, Rietdorf J, et al. In vivo selective cytoskeleton dynamics quantification in interphase cells by pulsed UV laser nanosurgery. Traffic 2005 ; 6 : 1093-102.
- 5. Botvinick EL, Venugopalan V, Shah JV, et al. Controlled ablation of microtubules using a picosecond laser. Biophys J 2004 ; 87 : 4203-12.
- 6. Watanabe W, Arakawa N, Matsunaga S, et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt Exp 2004 ; 12 : 4203-13.
- 7. Srinivasan R. Ablation of polymers and biological tissue by ultraviolet lasers. Science 1986 ; 234 : 559.
- 8. Colombelli J, Grill SW, Stelzer EHK. Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev Sci Instr 2004 ; 75 : 472-8.
- 9. Joglekar AP, Liu HH, Meyhöfer E, et al. Optics at critical intensity : applications to nanomorphing. Proc Natl Acad Sci USA 2004 ; 101 : 5856-61.
- 10. Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 2005 ; 81 : 1015-47.
- 11. Tolic-Nørrelykke IM, Sacconi L, Thon G, Pavone FS. Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol 2004 ; 14 : 1181-6.
- 12. Heisterkamp A, Maxwell IZ, Mazur E, et al. Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Exp 2005 ; 13 : 1390-6.
- 13. Koenig K, Riemann I, Fritzsche W. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 2001 ; 26 : 819-21.
- 14. Montell DJ, Keshishian H, Spradling AC. Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science 1991 ; 254 : 290-3.
- 15. Berger F. Cell ablation studies in plant development. Cell Mol Biol(Noisy-le-Grand) 1998; 44 : 711-9.
- 16. Supatto W, Debarre D, Moulia B, et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 2005 ; 102 : 1047-52.
- 17. Hutson MS, Tokutake Y, Chang MS, et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modelling. Science 2003 ; 300 : 145-9.
- 18. Kiehard DP, Galbraith CG, Edwards KA, et al. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 2000 ; 149 : 471-90.
- 19. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies : growth and diabetic phenotypes. Science 2002 ; 296 : 1118-20.
- 20. Schöpper B, Ludwig M, Edenfeld J, et al. Possible applications of lasers in assisted reproductive technologies. Hum Reprod. 1999 ; 14 (suppl 1) : 186-93.
- 21. Blanchet GB, Russell JB, Fincher CR Jr, Portmann M. Laser micromanipulation in the mouse embryo : a novel approach to zona drilling. Fertil Steril 1992 ; 57 : 1337-41.
- 22. Khodjakov A, Cole RW, Oakley BR, Rieder CL. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000 ; 10 : 59-67.
- 23. Gross GW, Lucas JH, Higgins ML. Laser microbeam surgery : ultrastructural changes associated with neurite transection in culture. J Neurosci 1983 ; 3 : 1979-93.
- 24. Yanik MF, Cinar H, Cinar HN, et al. Neurosurgery : functional regeneration after laser axotomy. Nature 2004 ; 432 : 822.
- 25. Henriksen GH, Taylor AR, Brownlee C, Assmann SM. Laser microsurgery of higher plant cell walls permits patch-clamp access. Plant Physiol 1996 ; 110 : 1063-8.
- 26. Buer CS, Gahagan KT, Swartzlander GA Jr, Weathers PJ. Insertion of microscopic objects through plant cell walls using laser microsurgery Biotechnol Bioeng 1998 ; 60 : 348-55.
- 27. Hahne G, Hoffmann F. The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 1984 ; 33 : 175-9.
- 28. Grill SW, Gonczy P, Stelzer EHK, Hyman AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001 ; 409 : 630-3.
- 29. Khodjakov A, La Terra S, Chang F. Laser microsurgery in fission yeast : role of the mitotic spindle midzone in anaphase B. Curr Biol 2004 ; 14 : 1330-40.
- 30. Mitchison TJ, Kirschner M. Dynamic instability of microtubule growth. Nature 1984 ; 312 : 237-42.
- 31. Tao W, Walter RJ, Berns MW. Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable. J Cell Biol 1988 ; 107 : 1025-35.