Résumés
Résumé
Chez les eucaryotes, les ARN messagers (ARNm) subissent de nombreuses modifications co-transcriptionnelles qui conduisent à leur maturation avant d’être transportés dans le cytoplasme pour être traduits efficacement en différentes protéines. Parmi ces modifications, on trouve l’ajout d’une structure coiffe à l’extrémité 5’ des ARNm, l’épissage des séquences non codantes (introns) et la synthèse d’une queue de polyadénosines à l’extrémité 3’. Malgré les découvertes distinctes de ces processus, il a été démontré qu’il existe une coopérativité entre ces différentes étapes de maturation et de transcription. Chacune de celles-ci mobilise de nombreux facteurs protéiques qui englobent un vaste réseau d’interactions. De par ses contributions considérables avec les multiples complexes de maturation, le domaine carboxyterminal de l’ARN polymérase II fait partie intégrante de ce réseau d’interactions. Le niveau de complexité de ces interactions demeure toutefois important. De ce fait, de nouveaux liens intermoléculaires seront sans doute mis en évidence dans un avenir rapproché.
Summary
Processing of eukaryotic pre-mRNAs is an important step for the translation of proteins. These processing events include the addition of a cap structure at the 5’ terminus of the pre-mRNA, the splicing out of introns and the acquisition of a polyadenosine tail at the 3’ terminus of the pre-mRNA. It has now become apparent that the RNA processing events can significantly influence each other. RNA polymerase II appears as a key player in these processes, cooperating with numerous processing factors that are involved in capping, splicing, and polyadenylation. More specifically, the carboxyterminal domain of the large subunit of the enzyme plays a critical role in coordination of the processing events. The number of interactions between the various RNA processing events identified so far reflects the complexity of these reactions. As more studies focus on these interactions, additional links and cellular partners will undoubtedly be discovered.
Parties annexes
Références
- 1. Bisaillon M. La structure-coiffe des ARN messagers. Med Sci (Paris) 2001 ; 17 : 312-9.
- 2. Furuichi Y, Shatkin AJ. Characterization of cap structures. Meth Enzymol 1989 ; 180 : 164-76.
- 3. Hirose Y, Manley JL. RNA polymerase II and the integration of nuclear events. Genes Dev 2000 ; 14 : 1415-29.
- 4. Proudfoot NJ, Furger A, Dye MJ. Integrating mRNA processing with transcription. Cell 2002 ; 108 : 501-12.
- 5. McKendrick L, Thompson E, Ferreira J, et al. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Mol Cell Biol 2001 ; 21 : 3632-41.
- 6. Shatkin AJ. Capping of eucaryotic mRNAs. Cell 1976 ; 9 : 645-53.
- 7. Varani G. A cap for all occasions. Structure 1997 ; 5 : 855-8.
- 8. Baron-Benhamou J, Fortes P, Inada T, et al. The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA 2003 ; 9 : 654-62.
- 9. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003 ; 72 : 291-336.
- 10. Jurica MS, Moore MJ. Capturing splicing complexes to study structure and mechanism. Methods 2002 ; 28 : 336-45.
- 11. Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997 ; 11 : 2755-66.
- 12. Bienroth S, Keller W, Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J 1993 ; 12 : 585-94.
- 13. Proudfoot N, O’Sullivan J. Polyadenylation: a tail of two complexes. Curr Biol 2002 ; 12 : R855-7.
- 14. Flaherty SM, Fortes P, Izaurralde E, et al. Participation of the nuclear cap binding complex in pre-mRNA 3’ processing. Proc Natl Acad SciUSA 1997 ; 94 : 11893-8.
- 15. Gray NK, Jeffery MC, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 2000 ; 19 : 4723-33.
- 16. Bauren G, Belikov S, Wieslander L. Transcriptional terminaison in the Balbiani ring 1 gene is closely coupled to 3’-end formation and excision of the 3’-termial intron. Genes Dev 1998 ; 12 : 2759-69.
- 17. Cramer P, Srebrow A, Kadener S, et al. Coordination between transcription and pre-mRNA processing. FEBS Lett 2001 ; 498 : 179-82.
- 18. Sims 3rd RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II : the short and long of it. Genes Dev 2004 ; 18 : 2437-68.
- 19. Sims 3rd RJ, Mandal SS, Reinberg D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 2004 ; 16 : 263-71.
- 20. Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 2002 ; 1577 : 308-24.
- 21. Rodriguez CR, Cho EJ, Keogh MC, et al. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 2000 ; 20 : 104-12.
- 22. Wen, Y, Shatkin AJ. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev 1999 ; 13 : 1774-9.
- 23. Hirose Y, Tacke R, Manley JL. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 1999 ; 13 : 1234-9.
- 24. Yuriev A, Patturajan M, Litingtung Y, et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich protein. Proc Natl Acad Sci USA 1996 ; 93 : 6975-80.
- 25. Greenleaf AL. Positive patches and negative noodles : linking RNA processing to transcription. Trends Biochem 1993 ; 18 : 117-9.
- 26. Patturajan M, Wei X, Berezney R, Corden JL. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol Cell Biol 1998 ; 18 : 2406-15.
- 27. Ge H, Si Y, Roeder RG. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 1998 ; 17 : 6723-9.
- 28. Ge H, Si Y, Wolffe AP. A novel transcriptional coactivator, p52, functionnally interacts with the essential splicing factor ASF/SF2. Mol Cell 1998 ; 2 : 751-9.
- 29. Yonaha M, Proudfoot NJ. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol Cell 1999 ; 3 : 593-600.