Résumés
Résumé
Les maladies parodontales sont des pathologies inflammatoires d’origine infectieuse. Leur influence sur d’autres pathologies, comme le diabète ou certaines affections cadiovasculaires, implique un meilleur contrôle de ces maladies, et par conséquent une meilleure compréhension de leurs processus d’évolution. Les destructions tissulaires liées aux maladies parodontales sont principalement dues à la présence, dans le sillon gingivodentaire (ou sulcus), des lipopolysaccharides présents à la surface des bactéries à Gram négatif. Parmi les tissus lésés, la destruction de l’os alvéolaire est particulièrement problématique, en raison de son irréversibilité. Cette destruction tissulaire se produit selon deux voies, directe et indirecte : dans la voie indirecte, les LPS induisent la sécrétion de cytokines pro-inflammatoires, qui vont déclencher une chaîne de réactions menant à l’activation des ostéoclastes ; dans la voie directe, les LPS (lipopolysaccharides) peuvent stimuler les ostéoblastes, les pré-ostéoclastes et les ostéoclastes par une voie indépendante des cytokines inflammatoires. La découverte récente de l’implication du système RANK/RANK-L dans l’activation des ostéoclastes a donné un nouvel élan à la compréhension des mécanismes impliqués dans la destruction de l’os alvéolaire.
Summary
During periodontal infections, bacterial lipopolysaccharides (LPS) from Gram negative bacteria, along with other bacterial products, drive alveolar bone destruction. Tissue destruction occurs through both direct and indirect pathways. In the indirect pathway, LPS induce the secretion of proinflammatory cytokines, which in turn provokes a cascade of reactions leading to osteoclasts activation. In the direct pathway, LPS stimulate osteoblasts, osteoclasts precursors and osteoclasts, with an inflammatory cytokines independent manner. In this paper, the mechanisms involved in these two pathways are reviewed.
Parties annexes
Références
- 1. Tanner A, Kent R, Maiden MF, Taubman MA. Clinical, microbiological and immunological profile of healthy, gingivitis and putative active periodontal subjects. J Periodontal Res 1996 ; 31 : 195-204.
- 2. Schletter J, Heine H, Ulmer AJ, Rietschel ET. Molecular mechanisms of endotoxin activity. Arch Microbiol 1995 ; 164 : 383-9.
- 3. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995 ; 13 : 437-57.
- 4. Chaudhary PM, Ferguson C, Nguyen V, et al. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4 : evidence for a multi-gene receptor family in humans. Blood 1998 ; 91 : 4020-7.
- 5. Chow JC, Young DW, Golenbock DT, et al. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999 ; 274 : 10689-92.
- 6. Nagasawa T, Kobayashi H, Kiji M, et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002 ; 130 : 338-44.
- 7. Baker PJ, Dixon M, Evans RT, et al. CD4+ T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 1999 ; 67 : 2804-9.
- 8. Matsuki Y, Yamamoto T, Hara K. Interleukin-1 mRNA-expressing macrophages in human chronically inflamed gingival tissues. Am J Pathol 1991 ; 138 : 1299-305.
- 9. Pinner RW, Teutsch SM, Simonsen L, et al. Trends in infectious diseases mortality in the United States. JAMA 1996 ; 275 : 189-93.
- 10. Kikuchi T, Matsuguchi T, Tsuboi N, et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J Immunol 2001 ; 166 : 3574-9.
- 11. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand : a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 1999 ; 77 : 188-93.
- 12. Kawai T, Eisen-Lev R, Seki M, et al. Requirement of B7 costimulation for Th1-mediated inflammatory bone resorption in experimental periodontal disease. J Immunol 2000 ; 164 : 2102-9.
- 13. Josien R, Wong BR, Li HL, et al. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999 ; 162 : 2562-8.
- 14. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001 ; 12 : 125-35.
- 15. Verhasselt V, Buelens C, Willems F, et al. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells : evidence for a soluble CD14-dependent pathway. J Immunol 1997 ; 158 : 2919-25.
- 16. Bell. RANK Ligand and the regulation of skeletal remodeling. J Clin Invest 2003 ; 111 : 1120-2
- 17. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998 ; 95 : 3597-602.
- 18. Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000 ; 191 : 275-86.
- 19. Hofbauer LC, Lacey DL, Dunstan CR, et al. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999 ; 25 : 255-9.
- 20. Perkins SL, Kling SJ. Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation. Am J Physiol 1995 ; 269 : E1024-30.
- 21. Zou W, Bar-Shavit Z. Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res 2002 ; 17 : 1211-8.
- 22. Takami M, Woo JT, Nagai K. Requirement of osteoblastic cells for the fusion of osteoclasts. J Bone Miner Metab 1998 ; 16 : 151-7.
- 23. Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T. Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res 1999 ; 78 : 1617-23.
- 24. Jimi E, Akiyama S, Tsurukai T, et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 1999 ; 163 : 434-42.
- 25. Itoh K, Udagawa N, Kobayashi K, et al. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol 2003 ; 170 : 3688-95.
- 26. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998 ; 93 : 165-76
- 27. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999 ; 11 : 443-51.