Résumés
Résumé
Les sphingolipides (SPL) sont des molécules ubiquitaires indispensables au maintien et au développement des organismes vivants. Ils ne sont pas répartis uniformément le long de la membrane mais regroupés sous forme de microdomaines lipidiques appelés rafts. On a longtemps pensé que les SPL avaient uniquement un rôle structural. On sait maintenant qu’ils jouent aussi un rôle de récepteur et de seconds messagers (intervenant dans des fonctions majeures de la vie cellulaire) et que de nombreuses maladies génétiques (sphingolipidoses) s’expliquent par un dysfonctionnement de leur métabolisme. Après un rappel des propriétés structurales des sphingolipides, cet article fait le point sur les relations entre leur rôle de récepteur et l’entrée d’agents pathogènes dans la cellule ainsi que sur les mécanismes pathologiques des sphingolipidoses.
Summary
Sphingolipids are present in all eukaryotic cells and share a sphingoid base : sphingosine. They were first discovered in 1884 and for a long time they were thought to participate to membrane structure only. Recently it has been established that they are mainly located in particular areas of the membrane called rafts which are signalling platforms. It has also been demonstrated that sphingolipids are receptors and second messengers. They play a crucial role in cellular functioning and are necessary to maintenance and developing of living organisms. However due to their receptor properties, they are also gateway for penetration of pathogenic agents such as virus (Ebola, HIV) or toxins (botulinium, tetanus). These agents first bind to glycosphingolipids or proteins mainly located in rafts. The complex so formed is required for the crossing of the membrane by the pathogenic agent. Sphingolipids metabolism is regulated by numerous enzymes. A failure in the activity of one of them induces an accumulation of sphingolipids known as sphingolipidoses. These are genetic diseases having severe consequences for the survival of the organism. The precise mechanisms of the sphingolipidoses are still mainly unknown which explains why few therapeutic strategies are available. These particular properties of lipids rafts and sphingolipids explain why a growing number of studies in the medical and scientific fields are devoted to them.
Parties annexes
Références
- 1. Karlsson KA. Sphingolipid long chain bases. Lipids 1970 ; 5 : 878-91.
- 2. Liu G, Kleine L, Hebert R. Advances in the signal transduction of ceramide and related sphingolipids. Crit Clin Lab Sci 1999 ; 36 : 511-73.
- 3. Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1998 ; 1376 : 467-79.
- 4. Ramstedt B, Slotte JP. Membrane properties of sphingomyelins. FEBS Lett 2002 ; 531 : 33-7.
- 5. Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000 ; 275 : 17221-4.
- 6. Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry 1988 ; 27 : 6197-202.
- 7. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997 ; 387 : 569-72.
- 8. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000 ; 1 : 31-9.
- 9. Hoessli DC, Ilangumaran S, Soltermann A, et al. Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling plateform. GlycoconjJ 2000 ; 17 : 191-7.
- 10. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci 2002 ; 25 : 412-7.
- 11. Pike LJ. Lipid rafts : bringing order to chaos. J Lipid Res 2003 ; 44 : 655-67.
- 12. Hiol A, Davey PC, Osterhout JL, et al. Palmitoylation regulates RGS16 function I. Mutation of amino terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue. J Biol Chem 2003 ; 278 : 19301-8.
- 13. Osterhout JL, Waheed AA, Hiol A, et al. Palmitoylation regulates RGS16 function II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signalling. J Biol Chem 2003 ; 278 : 19309-16.
- 14. O’Brien JS, Sampson EL. Lipid composition of the normal human brain : gray matter, white matter, and myelin. J Lipid Res 1965 ; 6 : 537-44.
- 15. Stoffel W, Bosio A. Myelin glycolipids and their functions. Curr Opin Neurobiol 1997 ; 7 : 654-61.
- 16. Subbaiah PV, Sargis RM. Sphingomyelin : a natural modulator of membrane homeostasis and inflammation. Med Hypotheses 2001 ; 57 : 135-8.
- 17. Fishman PH, Brady RO. Biosynthesis and function of gangliosides. Science 1976 ; 194 : 906-15.
- 18. McKerracher L, Winton MJ. Nogo on the go. Neuron 2002 ; 36 : 345-8.
- 19. Yang LJ, Zeller CB, Shaper NL, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 1996 ; 93 : 814-8.
- 20. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998 ; 14 : 111-36.
- 21. Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes ? Trends Biochem Sci 1986 ; 11 : 314-7.
- 22. Fantini J, Garmy N, Mahfoud R, Yahi N. Lipid rafts : structure, function and role in HIV, Alzheimers and prion diseases. Expert Rev Mol Med 2002 ; 1-22.
- 23. Bavari S, Bosio CM, Wiegand E, et al. Lipid raft microdomains : a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002 ; 195 : 593-602.
- 24. Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest 2002 ; 110 : 597-603.
- 25. O’Hanlon GM, Bullens RW, Plomp JJ, Willison HJ. Complex gangliosides as autoantibody targets at the neuromuscular junction in Miller Fisher syndrome : a current perspective. Neurochem Res 2002 ; 27 : 697-709.
- 26. Hanada K. Sphingolipids in infectious diseases. Jpn J Infect Dis 2005 ; 58 : 131-48.
- 27. Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 2004 ; 5 : 554-65.
- 28. Kolodny EH. Niemann-Pick disease. Curr Opin Hematol 2000 ; 7 : 48-52.
- 29. Jmoudiak M, Futerman AH. Gaucher disease: pathological mechanisms and modern management. Br J Haematol 2005 ; 129 : 178-88.
- 30. Masson C, Cisse I, Simon V, et al. Fabry disease : a review. Joint Bone Spine 2004 ; 71 : 381-3.
- 31. Suzuki K. Globoid cell leucodystrophy (Krabbe‘s disease): update. J Child Neurol 2003 ; 18 : 595-603.
- 32. Gieselmann V, Franken S, Klein D, et al. Metachromatic leukodystrophy : consequence of sulphatide accumulation. Acta Paediatr 2003 ; 92 (suppl) : 74-9.
- 33. Kaback MM, Desnick RJ. Tay-Sachs disease : from clinical description to molecular defect. Adv Genet 2001 ; 44 : 1-9.
- 34. Bar J, Linke T, Ferlinz K, et al. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 2001 ; 17 : 199-209.
- 35. Vellodi A. Lysosomal storage disorders. Br J Haematol 2005 ; 128 : 413-31.
- 36. Suzuki K. Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem Res 1998 ; 23 : 251-9.
- 37. Mitchison TJ. Psychosine, cytokinesis and orphan receptors : unexpected connections. J Cell Biol 2001 ; 153 : F1-4.
- 38. Spiegel S, Milstien S. Sphingosine-1-phosphate : an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003 ; 4 : 397-407.
- 39. Farina F, Cappello F, Todaro M, et al. Involvement of caspase-3 and GD3 ganglioside in ceramide induced apotosis in Farber disease. J Histochem. Cytochem 2000 ; 48 : 57-62.
- 40. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats : implications for human obesity. Proc Natl Acad Sci USA 2000 ; 97 : 1784-9.
- 41. Miranda SR, He X, Simonaro CM, et al. Infusion of recombinant human acid sphingomyelinase into Niemann-Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 2000 ; 14 : 1988-95.
- 42. Bae JS, Jang KH, Schuchman TR, et al. Comparative effects of recombinant acid sphingomyelinase administration by different routes in Niemann-Pick disease mice. Exp Anim 2004 ; 53 : 417-21.
- 43. Brady RO. Enzyme replacement therapy : conception, chaos and culmination. Philos Trans R Soc Lond B Biol Sci 2003 ; 358 : 915-9.
- 44. Platt FM, Jeyakumar M, Andersson U, et al. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis 2001 ; 24 : 275-90.
- 45. Zimran A, Elstein D. Gaucher disease and the clinical experience with substrate reduction therapy. Philos Trans R Soc Lond B Biol Sci 2003 ; 358 : 961-6.
- 46. Moyses C. Substrate reduction therapy : clinical evaluation in type 1 Gaucher disease. Philos Trans R Soc Lond B Biol Sci 2003 ; 358 : 955-60.
- 47. Cox TM. Substrate reduction therapy for lysosomal storage diseases. Acta Paediatr 2005 ; 94 (suppl) : 69-75.
- 48. Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 2004 ; 6 : 481-506.