Résumés
Résumé
La plasticité cérébrale post-lésionnelle (PCPL) décrit l’ensemble des processus permettant au système nerveux central de se réorganiser après une atteinte physique. Depuis l’influent travail de Broca et la prise de pouvoir des modèles « localisationnistes », il est largement admis que la PCPL est limitée, voire impossible, au sein des aires fonctionnelles majeures, dites éloquentes. Pourtant, depuis quelques années, de nouvelles données issues de la chirurgie des gliomes infiltrants de bas-grade (GIBG) sont venues bousculer ce dogme. Il apparaît en effet de plus en plus clairement que des excisions cérébrales massives peuvent être intégralement compensées, pour ne laisser place à aucun déficit fonctionnel détectable. Des techniques d’imagerie pré- et post-chirurgicales, ainsi que des procédures de stimulation peropératoire, permettent de suivre la nature et la cinétique de ces compensations. Celles-ci débutent avant la chirurgie, en réaction à l’invasion tumorale, et se consolident pendant et après la procédure opératoire. Les mécanismes de la compensation pré- et post-lésionnelle impliquent les aires périlésionnelles, les structures cérébrales ipsilatérales distantes et les homologues controlatéraux des zones réséquées. De tels résultats ont d’évidentes implications fondamentales et cliniques, et ouvrent d’importantes perspectives pour la compréhension de la dynamique cérébrale et des phénomènes de plasticité.
Summary
Post-lesional plasticity (PLP) describes the processes that reorganize cerebral connections after an injury. Since Broca’s influential contribution and the common endorsement of “localisationist” models of brain physiology, it has been widely admitted that PLP was limited, not to say impossible in the so-called “eloquent areas”. However, recent observations associated with the surgical treatments of low grade gliomas have called this dogma into question. Indeed, more and more evidence suggest that large cerebral resections can be compensated so efficiently that no functional deficits can be detected after the surgery. Pre and post surgical investigations based on imaging techniques, as well as intra-surgical investigations involving electrical stimulations, allow to track the nature and the temporal characteristics of these compensations. Compensatory reactions begin before the operation, in response to the tumoral growth. They remain active during and after the surgery. These compensations can involve the perilesional adjacent areas, the distant ipsilateral cerebral structures and the homologous contra-lateral regions. When considered together these results have obvious fundamental and clinical implications. They open new perspectives for understanding cerebral dynamics and the process of brain plasticity.
Parties annexes
Références
- 1. Rijntjes M, Weiller C. Recovery of motor and language abilities after stroke : the contribution of functional imaging. Prog Neurobiol 2002 ; 66 : 109-22.
- 2. Duffau H, Capelle L, Denvil D, et al. Usefulness of intraoperative electrical sub-cortical mapping in surgery of low-grade gliomas located within eloquent regions : functional results in a consecutive series of 103 patients. J Neurosurg 2003 ; 98 : 764-78.
- 3. Duffau H, Capelle L, Sichez N, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 2002 ; 125 : 199-214.
- 4. Varona JF, Bermejo F, Guerra JM, Molina JA. Long term prognosis of ischemic stroke in young adults. J Neurol 2004 ; 251 : 1507-14.
- 5. Desmurget M, Pelisson D, Urquizar C, et al. Functional anatomy of saccadic adaptation in humans. Nat Neurosci 1998 ; 1 : 524-8.
- 6. Clower DM, Hoffman JM, Votaw JR, et al. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 1996 ; 383 : 618-21.
- 7. Desmurget M, Grea H, Grethe JS, et al. Functional anatomy of nonvisual feedback loops during reaching : a positron emission tomography study. J Neurosci 2001 ; 21 : 2919-28.
- 8. Duffau H, Lopes M, Arthuis F, et al. Contribution of intraoperative electrical stimulations in surgery of low-grade gliomas : a comparative study between two series without (1985-1996) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 2005 ; 76 : 845-51.
- 9. Walker DG, Kaye AH. Low grade glial neoplasms. J Clin Neurosci 2003 ; 10 : 1-13.
- 10. Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults : a critical review of extent of resection as a factor influencing outcome. J Neurosurg 2001 ; 95 : 735-45.
- 11. Dronckers NF. A new brain region for coordinating speech articulation. Nature 1996 ; 384 : 159-61.
- 12. Duffau H, Capelle L, Lopes M, et al. The insular lobe : physiopathological and surgical considerations. Neurosurgery 2000 ; 47 : 801-11.
- 13. Duffau H, Bauchet L, Lehéricy S, Capelle L. Functional compensation of the left insula dominant for language. NeuroReport 2001 ; 12 : 2159-63.
- 14. Duffau H, Denvil D, Capelle L. Long term reshaping of language, sensory and motor maps following glioma resection : a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry 2002 ; 72 : 511-6.
- 15. Duffau H, Capelle L, Denvil D, et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain : hypothesis of brain compensation. J Neurol Neurosurg Psychiatry 2003 ; 74 : 901-7.
- 16. Duffau H, Capelle L. Preferential brain locations of low-grade gliomas : comparison with glioblastomas and review of hypothesis. Cancer 2004 ; 100 : 2622-6.
- 17. Meyer PT, Stuz L, Schreckenberger M, et al. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses. Eur J Nucl Med Mol Imaging 2003 ; 30 : 951-60.
- 18. Atlas SW, Howard RS, Maldjian J, et al. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas : findings and implications for clinical management. Neurosurgery 1996 ; 38 : 329-38.
- 19. Thiel A, Herholz K, von Stockhausen HM, et al. Localization of language-related cortex with 15O-labeled water PET in patients with gliomas. NeuroImage 1998 ; 7 : 284-95.
- 20. Thiel A, Herholz K, Koyuncu A, et al. Plasticity of language networks in patients with brain tumors : a positron emission tomography activation study. Ann Neurol 2001 ; 50 : 620-9.
- 21. Krainik A, Duffau H, Capelle L, et al. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 2004 ; 62 : 1323-32.
- 22. Holodny AI, Schulder M, Ybasco A, Liu WC. Translocation of Broca’s area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma. J Comput Assist Tomogr 2002 ; 26 : 941-3.
- 23. Petrovich NM, Holodny AI, Brennan CW, et al. Isolated translocation of Wernicke’s area to the right hemisphere in a 62-year-man with a temporo-parietal glioma. Am J Neuroradiol 2004 ; 25 : 130-3.
- 24. Fandino J, Kollias SS, Wieser HG, et al. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 1999 ; 91 : 238-50.
- 25. Heiss WD, Thiel A, Kessler J, Herholz K. Disturbance and recovery of language function : correlates in PET activation studies. NeuroImage 2003 ; 20 : 42-9.
- 26. Berger MS, Rostomily RC. Low-grade gliomas : Functional mapping resection strategies, extent of resection, and outcome. J Neuro Oncol 1997 ; 34 : 85-101.
- 27. Keles GE, Lundin DA, Lamborn KR, et al. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways : evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 2004 ; 100 : 369-75.
- 28. Duffau H, Gatignol P, Mandonnet E, et al. New insights into the anatomo-functional connectivity of the semantic system : a study using cortico-subcortical electrostimulations. Brain 2005 ; 128 : 797-810.
- 29. Duffau H, Sichez JP, Lehéricy S. Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma. Evidence using direct cortical stimulations. Ann Neurol 2000 ; 47 : 132-5.
- 30. Duffau H. Acute functional reorganisation of the human motor cortex during resection of central lesions : a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry 2001 ; 70 : 506-13.
- 31. Duffau H. Lessons from brain mapping in low-grade glioma surgery : insights into relationships between tumour and brain plasticity. Lancet Neurol 2005 ; 4 : 476-86.
- 32. Duffau H, Capelle L. Functional recovery after resection of gliomas infiltrating primary somatosensory fields. Study of intraoperative electrical stimulation. Neurochirurgie 2001 ; 47 : 534-41.
- 33. Nii Y, Uematsu S, Lesser RP, Gordon B. Does the central sulcus divide motor and sensory functions ? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 1996 ; 46 : 360-7.