Résumés
Résumé
L’activité mentale de l’éveil est tributaire de processus centraux à la fois antagonistes et complémentaires. En effet, au niveau cortical, agissent conjointement des neuromédiateurs activateurs - acétylcholine et glutamate - et d’autres essentiellement inhibiteurs tels que GABA, noradrénaline et sérotonine. Pendant le sommeil paradoxal, les taux des deux derniers chutent drastiquement, ce qui pourrait entraîner, directement ou indirectement, la désorganisation des structures corticales et sous corticales, les anomalies de l’excitabilité centrale, ainsi que la baisse du flux sanguin dans le cortex préfrontal dorsolatéral. Ces dysfonctionnements s’observent à la fois chez le schizophrène et pendant le sommeil paradoxal chez le sujet normal. De plus, la baisse de la dopamine dans le cortex préfrontal en sommeil paradoxal, mise en évidence par l’expérimentation animale, permet à présent d’établir un lien de cause à effet entre ce déficit dopaminergique et l’altération du jugement critique rencontrée tant dans le rêve que dans la schizophrénie. Dans le noyau accumbens, l’augmentation de dopamine et la diminution concomitante du glutamate expliqueraient l’activité hallucinatoire et délirante du rêve et de la schizophrénie. Sommeil paradoxal et schizophrénie partageant les mêmes caractéristiques psychologiques, électrophysiologiques, circulatoires, pharmacologiques et neurochimiques, cette phase de sommeil pourrait constituer un bon modèle neurobiologique de cette maladie mentale.
Summary
Normal waking mentation is the outcome of the combined action of both electrophysiological and neurochemical antagonistic and complementary activating and inhibitory influences occurring mainly in the cerebral cortex. The chemical ones are supported principally by acetylcholine, and noradrenaline and serotonin, respectively. During rapid eye movement (REM) sleep, the monoaminergic silence - except dopaminergic ongoing activity - disrupts this equilibrium and seems to be responsible for disturbances of mental activity characteristic of dreaming. This imbalance could cause disconnectivity of cortical areas, failure of latent inhibition and possibly the concomitant prefrontal dorsolateral deactivation. Moreover, the decrease of prefrontal dopaminergic functioning could explain the loss of reflectiveness in this sleep stage. All these phenomena are also encountered in schizophrenia. The psychotic-like mentation of dreaming (hallucinations, delusions, bizarre thought processes) could result from the disinhibition of dopamine influence in the nucleus accumbens by the noradrenergic and serotonergic local silence and/or the lifting of glutamate influence from the prefrontal cortex and hippocampus. We hypothesize that, during REM sleep, the increase of dopamine and the decrease of glutamate release observed in nucleus accumbens reach the threshold values at which psychotic disturbances arise during wakefulness. Whatever the precise mechanism, it seems that the functional state of the prefrontal cortex and nucleus accumbens is the same during dreaming sleep stage and in schizophrenia. The convergent psychological, electrophysiological, tomographic, pharmacological and neurochemical criteria of REM sleep and schizophrenia suggest that this sleep stage could become a good neurobiological model of this psychiatric disease.
Parties annexes
Références
- 1. Llinas R, Ribary U. Coherent 40 Hz oscillation characterizes dream state in humans. Proc Nat Acad SciUSA 1993 ; 90 : 2078-81.
- 2. Evarts EV. Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J Neurophysiol 1964 ; 27 : 152-71.
- 3. Maquet P. Functional neuroimaging of normal sleep by positon emission tomography. J Sleep Res 2000 ; 9 : 207-31.
- 4. Araneda R, Andrade R. 5-Hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in the association cortex. Neuroscience 1991 ; 40 : 399-412.
- 5. Manunta Y, Edeline JM. Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow wave sleep. Eur J Neurosci 1999 ; 11 : 2134-50.
- 6. Aston-Jones G, Bloom FE. Norepinephrine-containing locus coeruleus neurons in behaving rat exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1981 ; 1 : 887-900.
- 7. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1981 ; 1 : 876-86.
- 8. McGinty DJ, Harper RM. Dorsal raphe neurons : depression of firing during sleep in cats. Brain Res 1976 ; 101 : 569-75.
- 9. Marrosu F, Portas C, Mascia MF, et al. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res 1995 ; 671 : 329-32.
- 10. Miller JD, Farber J, Gatz P, et al. Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res 1983 ; 273 : 133-41.
- 11. Foulkes WD. Dream reports from different stages of sleep. J Abnorm Soc Psychol 1962 ; 65 : 14-25.
- 12. Takeuchi T, Miyasita A, Inugami M, Yamamoto Y. Intrinsic dreams are not produced without REM sleep mechanims : evidence through elicitation of sleep onset periods. J Sleep Res 2001 ; 10 : 43-52.
- 13. Perez-Garci E, del Rio-Portilla Y, Guevara MA, et al. Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions. Sleep 2001 ; 24 : 118-26.
- 14. Meyer-Lindenberg A, Poline JB, Kohn PD, et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatr 2001 ; 158 : 1809-17.
- 15. Kisley MA, Olincy A, Robbins E, et al. Sensory gating impairement associated with schizophrenia persists into REM sleep. Psychophysiology 2003 ; 40 : 29-38.
- 16. Weinberger DR, Berman KF, Zec RF. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. 1. Regional cerebral blood flow evidence. Arch Gen Psychiatr 1986 ; 43 : 114-24.
- 17. Braun AR, Balkin TJ, Wesensten NJ, et al. Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 1998 ; 279 : 91-5.
- 18. Gandolfo G, Arnaud, C, Gottesmann C. Transmission in the ventrobasal complex of rat during the sleep-waking cycle. Brain Res Bull 1980 ; 5 : 921-7.
- 19. Pommier J. Le langage intérieur. Paris : Denoël, 1970 : 128 p.
- 20. Behrendt RP, Young C. Hallucinations in schizophrenia, sensori impairment and brain disease : an unified model. Behav Brain Sci 2004 ; 27 : 771-87.
- 21. Demetrescu M, Demetrescu M, Iosif G. Diffuse regulation of visual thalamo-cortical responsiveness during sleep and wakefulness. Electroenceph Clin Neurophysiol 1966 ; 20 : 450-69.
- 22. Gottesmann C. Recherche sur la psychophysiologie du sommeil chez le rat. Paris : Presses du Palais Royal, 1967 : 156 p.
- 23. Hobson JA, Stickgold R, Pace-Schott EF. The neuropsychology of REM sleep dreaming. NeuroReport 1998 ; 9 : R1-14.
- 24. Gottesmann C. Neurophysiological support of consciousness during waking and sleep. Prog Neurobiol 1999 ; 59 : 469-508.
- 25. Solms M. Dreaming and REM sleep are controlled by different brain mechanisms. Behav Brain Sci 2000 ; 23 : 843-50.
- 26. Léna I, Parrot S, Deschaux O, et al. Variations in the extracellular levels of dopamine, noradrenaline, glutamate and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J NeurosciRes 2005 ; 81 : 891-9.
- 27. Miller AD, Blaha CD. Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur J Neurosci 2005 ; 21 : 1837-46.
- 28. Brake WG, Flores G, Francis D, et al. Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex. Neuroscience 2000 ; 96 : 687-95.
- 29. Hertel P, Fagerquist MV, Svensson TH. Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by α2 adrenoceptor blockade. Science 2001 ; 286 : 105-9.
- 30. Shippenberg TS, Hen R, He M. Region-specific enhancement of basal extracellular and cocaine-evoked dopamine levels following constitutive deletion of the serotonin (B1) receptor. J Neurochem 2000 ; 75 : 258-65.
- 31. Chergui K, Suaud-Chagny MF, Gonon F. Non-linear relationship between impulse flow. Dopamine release and dopamine elimination in the rat in vivo. Neuroscience1994 ; 62 : 641-5.
- 32. Linner L, Wiker C, Wadenberg ML, et al. Noradrenaline reuptake inhibition enhances the antipsychotic-like effect of raclopride and potentiates D2-blockade-induced dopamine release in the medial prefrontal cortex of the rat. Neuropsychopharmacology 2002 ; 27 : 691-8.
- 33. Silver H, Barash I, Aharon N, et al. Fluvoxamine augmentation of antipsychotics improves negative symptoms in psychotic chronic schizophrenic patients : a placebo-controlled study. Int Clin Psychopharmacol 2000 ; 15 : 257-61.
- 34. Abi-Dargham A, Moore H. Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003 ; 9 : 404-16.
- 35. MacKay AV, Iversen LL, Rossor M, et al. Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatr 1982 ; 39 : 991-7.
- 36. Reeves M, Lindholm DE, Myles PS, et al. Adding ketamine to morphine for patient-controlled analgesia after major abdominal surgery : a double-blind, randomized trial. Anesth Analg 2001 ; 93 : 116-20.
- 37. Grace AA. Gating information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Rev 2000 ; 31 : 330-41.
- 38. Chuhma N, Zhang H, Masson J, et al. Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J Neurosci2004 ; 24 : 972-81.
- 39. Gottesmann C. Dreaming and schizophrenia. A common neurobiological background. Sleep Biol Rhyt 2005 ; 3 : 64-74.