Résumés
Résumé
L’inhibition du courant pacemakerIf est une cible idéale pour réduire de façon sélective la fréquence cardiaque et constitue une approche thérapeutique attractive pour les cardiopathies ischémiques. Les études précliniques montrent que l’ivabradine (Procoralan®) inhibe le courant If du noeud sinusal, réduit de façon sélective la fréquence cardiaque au repos et à l’exercice, respecte la contractilité myocardique, la conduction auriculo-ventriculaire et la repolarisation ventriculaire et limite de façon aussi efficace qu’un β-bloquant l’ischémie myocardique induite par l’exercice, tout en préservant mieux la contractilité myocardique régionale. Ces données ont été confirmées chez l’homme, démontrant, en particulier, l’activité anti-ischémique au moins équivalente à celle d’un β-bloquant chez les patients ayant un angor stable. De grands essais cliniques en cours visent maintenant à déterminer l’intérêt de l’ivabradine dans l’insuffisance cardiaque d’origine ischémique et à tester sa capacité à améliorer le pronostic des cardiopathies ischémiques en réduisant la mortalité et la survenue d’événements cardiovasculaires majeurs.
Summary
Coronary artery disease is still a major cause of morbidity and mortality in the industrialized countries and its prevalence is predicted to grow with the current aging of the population in these countries. In spite of the rapid pace of progress and increasing use of myocardial revascularization procedures, in particular percutaneous coronary interventions, the medical treatment of coronary artery disease has lost none of its relevance in the majority of patients, though conventional drugs have their limitations and the pharmacological approach to ischemic heart disease needs to be improved in terms of efficacy and tolerance to ensure better prevention of mortality and improvement in quality of life. Since increased heart rate plays a major role in coronary artery disease, not only as a trigger of most ischemic episodes, but also as an independent predictor of mortality, inhibition of the pacemaker If current in view of inducing a direct and selective decrease in heart rate represents an ideal conceptual target and an attractive therapeutic approach to coronary artery disease. The screening of original benzocycloalkane compounds at the Servier Research Institute resulted in the selection of ivabradine (Procoralan®) for clinical development. Preclinical data showed that ivabradine inhibits the If current originating in the sinus node, induces a selective reduction in heart rate both at rest and during exercise, preserves myocardial contractility, atrioventricular conduction and ventricular repolarization and prevents exercise-induced myocardial ischemia as effectively as a β-blocker while offering better protection of regional myocardial contractility. These data were confirmed in humans, in particular the anti-ischemic efficacy of ivabradine, at least as effective as that of a β-blocker in patients with stable angina. Large ongoing clinical trials are seeking to assess the therapeutic value of ivabradine in ischemic heart failure and its potential for improving the prognosis of coronary artery disease by reducing mortality and the occurrence of major cardiovascular events.
Parties annexes
Références
- 1. Holubkov R, Laskey WK, Haviland A, et al. Angina 1 year after percutaneous coronary intervention : a report from the NHLBI Dynamic Registry. Am Heart J 2002 ; 144 : 826-33.
- 2. Mannheimer C, Camici P, Chester MR, et al. The problem of chronic refractory angina ; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J 2002 ; 23 : 355-70.
- 3. Steg PG, Dabbous OH, Feldman LJ, et al. Determinants and pronostic impact of heart failure complicating acute coronary syndromes : observations from the Global Registry of Acute Coronary Events (GRACE). Circulation 2004 ; 109 : 494-9.
- 4. Freemantle N, Cleland J, Young P, et al. β blockade after myocardial infarction : systematic review and meta regression analysis. Br Med J 1999 ; 318 : 1730-7.
- 5. Dargie HJ, Colucci W, Ford I, et al. Effect of carvedilol on outcome after myocardial infarction in patients with left ventricular dysfunction : the CAPRICORN randomised trial Lancet 2001 ; 357 : 1385-90.
- 6. Janosi A, Ghali JK, Herlitz J, et al. Metoprolol CR/XL in postmyocardial infarction patients with chronic heart failure : Experiences from MERIT-HF. Am Heart J 2003 ; 146 : 721-8.
- 7. Sonnenblick EH, Ross J Jr, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactorial determination. Am J Cardiol 1968 ; 22 : 328-36.
- 8. Vatner SF, Higgings CB, Franklin D, Braunwald E. Role of tachycardia in mediating the coronary hemodynamic response to severe exercice. J Appl Physiol 1972 ; 32 : 380-5.
- 9. Nabel EG, Selwyn AP, Ganz P. Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation 1990 ; 81 : 850-9.
- 10. Vatner SF, Baig H. Importance of heart rate in determining the effects of sympathomimetic amines on regional myocardial function and blood flow in conscious dogs with acute myocardial ischemia. Circ Res 1979 ; 45 : 793-803.
- 11. Guth BD, Heusch G, Steitelberger R, et al. Mechanism of beneficial effect of β-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ Res 1987 ; 60 : 738-46.
- 12. Dyer AR, Persky V, Stamler J, et al. Heart rate as a prognostic factor for coronary heart disease and mortality : findings in three Chicago epidemiologic studies. Am J Epidemiol 1980 ; 112 : 736-49.
- 13. Kannel WB, Kannel C, Paffengarger RS Jr, et al. Heart rate and cardiovascular mortality : the Framingham Study. Am Heart J 1987 ; 113 : 1489-94.
- 14. Hjalmarson A, Gilpin EA, Kjekshus JK, et al. Influence of heart rate on mortality after acute myocardial infarction. Am J Cardiol 1990 ; 65 : 547-53.
- 15. Greenland P, Daviglus ML, Dyer AR, et al. Resting heart rate is a risk factor for cardiovascular and noncardiovascular mortality : the Chicago Heart Association Detection Project in Industry. Am J Epidemiol 1999 ; 149 : 853-62.
- 16. Kristal-Boneh E, Silber H, Harari G, et al. The association of resting heart rate with cardiovascular, cancer and all-cause mortality. Eight year follow-up of 3527 male Israeli employees (the CORDIS Study). Eur Heart J 2000 ; 21 : 116-24.
- 17. Aronow WS, Ahn C, Mercando AD, et al. Association of average heart rate on 24-hour ambulatory electrocardiograms with incidence of new coronary events at 48-month follow-up in 1,311 patients (mean age 81 years) with heart disease and sinus rhythm. Am J Cardiol 1996 ; 78 : 1175-6.
- 18. Diaz A, Bourassa MG, Guertin MC, et al. Long term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 2005 ; 26 : 967-74.
- 19. Kjekshus J. Importance of heart rate in determining beta-blocker efficacy in acute and long-term myocardial infarction intervention trials. Am J Cardiol 1986 ; 57 : 43F-9.
- 20. The Multicenter Diltiazem Postinfarction Trial Research Group. Effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med 1988 ; 319 : 385-92.
- 21. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996 ; 334 : 1349-55.
- 22. CIBIS Investigators and Committees. A randomised trial of β-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation 1994 ; 90 : 1765-73.
- 23. Nul DR, Doval HC, Grancelli HO, et al. Heart rate is a marker of amiodarone mortality reduction in severe heart failure. J Am Coll Cardiol 1997 ; 29 : 1199-205.
- 24. James R, Arnold J, Allen J, et al. The effects of heart rate, myocardial ischemia and vagal stimulation on the threshold of ventricular fibrillation. Circulation 1977 ; 55 : 311-7.
- 25. Bernier M, Curtis JM, Hearse DJ. Ischemia-induced and reperfusion-induced arrhythmias : importance of heart rate. Am J Physiol 1989 ; 256 : H21-31.
- 26. Beere PA, Glagov S, Zarins CK. Retarding effect of lowered heart rate on coronary atherosclerosis. Science 1984 ; 226 : 180-2.
- 27. Kaplan JR, Manuck SB, Clarkson TB. The influence of heart rate on coronary atherosclerosis. J Cardiovasc Pharmacol 1987 ; 10 : S100-2.
- 28. Beere PA, Glagov S, Zarins CK. Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Localization, compensatory enlargement, and the sparing effect of lowered heart rate. Atheroscler Thromb 1992 ; 12 : 1245-53.
- 29. Perski A, Hamsten A, Linvall K, et al. Heart rate correlates with severity of coronary artery atherosclerosis in young postinfarction patients. Am Heart J 1988 ; 116 : 1369-73.
- 30. Perski A Ollson G, Landou C, et al. Minimum heart rate and coronary atherosclerosis : Independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. Am Heart J 1992 ; 123 : 609-16.
- 31. Heidland UE, Strauer BE. Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 2001 ; 104 : 1477-82.
- 32. Wright AJ, Hudlicka O. Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ Res 1981 ; 49 : 469-78.
- 33. Wright AJ, Hudlicka O, Brown MD. Beneficial effect of chronic bradycardial pacing on capillary growth and heart performance in volume overload heart hypertrophy. Circ Res 1989 ; 64 : 1205-12.
- 34. Zheng W, Brown MD, Brock TA, et al. Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res 1999 ; 85 : 192-8.
- 35. Patel SR, Breal JA, Diver DJ, et al. Bradycardia is associated with development of coronary collaterals in humans. Coron Artery Dis 2000 ; 11 : 467-72.
- 36. DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 1993 ; 55 : 451-67.
- 37. DiFrancesco D. The onset and autonomic regulation of cardiac pacemaker activity : relevance of the f current. Cardiovac Res1995 ; 29 : 449-56.
- 38. DiFrancesco D, Mangoni M. Modulation of single hyperpolarization-activated channels (If) by cAMP in the rabbit sino-atrial node. J Physiol 1994 ; 474 : 473-82.
- 39. Heyndrickx GR, Pannier JL, Muylaert P, et al. Alteration in myocardial oxygen balance during exercise after β-adrenergic blockade in dogs. J Appl Physiol 1980 ; 49 : 28-33.
- 40. Berdeaux A, Drieu la Rochelle C, Richard V, et al. Opposed responses of large and small coronary arteries to propranolol during exercise in dogs. Am J Physiol 1991 ; 261 : H265-70.
- 41. Peglion JL, Vian J, Thollon C, et al. S 16257, a novel sinoatrial node modulator : potent bradycardic activity with improved specificity. Can J Physiol Pharmacol 1994 ; 72 (suppl 1) : 95 (abstract).
- 42. Thollon C, Cambarrat C, Vian J, et al. Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations : comparison with UL-FS 49. Br J Pharmacol 1994 ; 112 : 37-42.
- 43. Thollon C, Bibouard JP, Cambarrat C, et al. Stereospecific in vitro and in vivo effects of the new sinus node inhibitor (+)-S 16257. Eur J Pharmacol 1997 ; 339 : 43-51.
- 44. Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev 1993 ; 73 : 197-227.
- 45. Bois P, Bescond J, Renaudon B, et al. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 1996 ; 118 : 1051-7.
- 46. Simon L, Ghaleh B, Puybasset L, et al. Coronary and haemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J Pharmacol Exp Ther 1995 ; 275 : 659-66.
- 47. Vilaine JP, Bidouard JP, Lesage L, et al. Anti-ischemic effects of ivabradine, a selective heart rate reducing agent, in exercise-induced myocardial ischemia in pigs. J CardiovascPharmacol 2003 ; 42 : 688-96.
- 48. Camm AJ, Lau CP. Electrophysiological effects of a single intravenous administration of ivabradine (S 16257) in adult patients with normal baseline electrophysiology. Drugs RD 2003 ; 4 : 83-9.
- 49. Manz M, Reuter M, Lauck G, et al. A single intravenous dose of ivabradine, a novel I(f) inhibitor lowers heart rate but does not depress left ventricular in patients with left ventricular dysfunction. Cardiology 2003 ; 100 : 149-55.
- 50. Borer JS, Fox K, Jaillon P, et al. Antianginal and antiischemic effects of ivabradine, an If inhibitor, in stable angina. A randomized, double-blind, multicentered, placebo-controlled trial. Circulation 2003 ; 107 : 817-23.
- 51. Tardif JC, Ford I, Tendera M, et al. Efficacy of ivabradine, a new selective If inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 2005 ; 26 : 2529-36.
- 52. Mulder P, Barbier S, Chagraoui A, et al. Long-term heart rate reduction induced by the selective If current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 2004 ; 109 : 1674 – 9.
- 53. Cerbai E, Pino R, Porciatti F, et al. Characterization of the hyperpolarization-activated current, If, in ventricular myocytes from human failing heart. Circulation 1997 ; 95 : 568-71.