Résumés
Résumé
Le bras court du chromosome 17 (17p) est fréquemment altéré dans les cancers humains, notamment au niveau du gène p53. Cependant, dans certains cancers, des altérations en 17p concernent des régions distales de p53, en l’absence de toute mutation de ce gène. Des analyses de perte d’hétérozygotie et de méthylation des îlots CpG présents dans les promoteurs de gènes ont permis d’identifier en 17p13.3 plusieurs nouveaux gènes suppresseurs de tumeur proches les uns des autres, tels que HIC1 (hypermethylated in cancer 1) et OVCA1 (ovarian cancer gene 1). HIC1 est d’autant plus intéressant que l’extinction de son expression est, jusqu’à présent, préférentiellement due à l’hyperméthylation de son promoteur, et qu’il a été récemment décrit l’existence d’une boucle de régulation entre HIC1 et p53. Toutefois, si l’impact des modifications épigénétiques dans la tumorigenèse n’est plus à démontrer, les mécanismes orientant le choix d’une inactivation génique par des phénomènes épigénétiques ou génétiques restent à déterminer.
Summary
Loss of heterozygosity (LOH) of the short arm of chromosome 17 (17p) is one of the most frequent genetic alterations in human cancers. Most often, allelic losses coincide with p53 mutations at 17p13.1. However, in many types of solid tumors including sporadic breast cancers, ovarian cancers, medulloblastomas and small cell lung carcinomas, frequent LOH or DNA methylation changes occur in a more telomeric region at 17p13.3, in absence of any p53 genetic alterations. These results suggest that one or more tumor suppressor genes located at 17p13.3 could be involved in tumorigenesis. In addition, the 17p13.3 region has also been implicated in the Miller-Dieker syndrome (MDS), a severe form of lissencephaly accompanied by developmental anomalies caused by heterozygous gene deletions. Analyses of deletion mapping and CpG island methylation patterns have resulted in the identification of two tumor suppressor genes at 17p13.3, HIC1 (hypermethylated in cancer 1) and OVCA1 (ovarian cancer gene 1). HIC1 is a tumor suppressor gene that encodes a transcriptional repressor with five Krüppel-like C2H2 zinc finger motifs and a N-terminal BTB/POZ domain. Clues to the tumor suppressor function of HIC1 have come from the study of heterozygous Hic1+/- mice, which develop spontaneous malignant tumors of different types. Generation of double heterozygous knockout mice Hic1+/-p53+/- provides strong evidence that epigenetically silenced genes such as HIC1 can significantly influence tumorigenesis driven by mutations of classic tumor suppressor genes. This functional cooperation between HIC1 and p53 is interesting and recently, its has been demonstrated that HIC1 was involved in a certain feedback regulation for p53 in tumor suppression through the histone deacetylase SIRT1. However, despite the fact that epigenetic oncogenesis is one of the most vibrant areas of biologic research, the determinants between genetic versus epigenetic routes of tumor suppressor gene inactivation remain elusive.
Parties annexes
Références
- 1. Feinberg AP. The epigenetics of cancer etiology. Sem Cancer Biol 2004 ; 14 : 427-32.
- 2. Wales MM, Biel MA, El-Deiry W, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1995 ; 1 : 570-7.
- 3. Schultz DC, Vanderveer L, Berman DB, et al. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res 1996 ; 56 : 1997-2002.
- 4. Pinte S, Stankovic-Valentin N, Deltour S, et al. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor : definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem 2004 ; 279 : 38313-24.
- 5. Deltour S, Pinte S, Guerardel C, et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 2002 ; 22 : 4890-901.
- 6. Prive GG, Melnick A, Ahmad K, Licht JD. Zinc finger proteins : from atomic contact to cellular function. In : Iuchi S, Kuldell N, eds. Georgetown : Landes Biosciences, 2004.
- 7. Deltour S, Guerardel C, Leprince D. Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors : the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci USA 1999 ; 96 : 14831-6.
- 8. Yang XJ, Gregoire S. Class II histone deacetylases : from sequence to function, regulation, and clinical implication. Mol Cell Biol 2005 ; 25 : 2873-84.
- 9. Yamanaka M, Watanabe M, Yamada Y, et al. Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 2003 ; 106 : 382-7.
- 10. Kanai Y, Ushijima S, Ochiai A, et al. DNA hypermethylation at the D17S5 locus is associated with gastric carcinogenesis. Cancer Lett 1998 ; 122 : 135-41.
- 11. Pieretti M, Powell DE, Gallion HH, et al. Hypermethylation at a chromosome 17 « hot spot » is a common event in ovarian cancer. Hum Pathol 1995 ; 26 : 398-401.
- 12. Fujii H, Biel MA, Zhou W, et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene 1998 ; 16 : 2159-64.
- 13. Rood BR, Zhang H, Weitman DM, Cogen PH. Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 2002 ; 62 : 3794-7.
- 14. Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 2003 ; 33 : 197-202.
- 15. Kwabi-Addo B, Giri D, Schmidt K, et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 2001 ; 98 : 11563-8.
- 16. DePinho RA. The age of cancer. Nature 2000 ; 408 : 248-54.
- 17. Quon KC, Berns A. Haplo-insufficiency? Let me count the ways. Genes Dev 2001 ; 15 : 2917-21.
- 18. Wynshaw-Boris A, Gambello MJ. LIS1 and dynein motor function in neuronal migration and development. Genes Dev 2001 ; 15 : 639-51.
- 19. Cardoso C, Leventer RJ, Ward HL, et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 2003 ; 72 : 918-30.
- 20. Carter MG, Johns MA, Zeng X, et al. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Hum Mol Genet 2000 ; 9 : 413-9.
- 21. Grimm C, Sporle R, Schmid TE, et al. Isolation and embryonic expression of the novel mouse gene Hic1, the homologue of HIC1, a candidate gene for the Miller-Dieker syndrome. Hum Mol Genet 1999 ; 8 : 697-710.
- 22. Chen CM, Behringer RR. Ovca1 regulates cell proliferation, embryonic development, and tumorigenesis. Genes Dev 2004 ; 18 : 320-32.
- 23. Chen W, Cooper TK, Zahnow CA, et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 2004 ; 6 : 387-98.
- 24. Britschgi C, Rizzi M, Grob TJ, et al. Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene 2005 ; november 21 (online).
- 25. Guerardel C, Deltour S, Pinte S, et al. Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 2001 ; 276 : 3078-89.
- 26. Chen W, Wamng DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53 dependent DNA damage responses. Cell 2005 ; 123 : 437-48.
- 27. Vaziri H, Dessain SK, Ng-Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001 ; 107 : 149-59.
- 28. Senawong T, Peterson VJ, Leid M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch Biochem Biophys 2005 ; 434 : 316-25.
- 29. Chen WY, Baylin SB. Inactivation of tumor suppressor genes : choice between genetic and epigenetic routes. Cell Cycle 2005 ; 4 : 10-2.
- 30. Nicoll G, Crichton DN, McDowell HE, et al. Expression of the hypermethylated in cancer gene (HIC-1) is associated with good outcome in human breast cancer. Br J Cancer 2001 ; 85 : 1878-82.