Un nombre croissant de données cliniques et expérimentales confirme le rôle important joué par le stress oxydant dans la pathogénie et la progression des maladies cardiovasculaires, particulièrement l’athérosclérose et l’hypertension [1]. Par exemple, une corrélation directe a été établie entre le développement de l’hypertension et la proportion d’anions superoxydes (O-.2) dans les vaisseaux des rats spontanément hypertendus (SHR) [2]. Des études récentes ont établi que l’aspirine (AAS) est un agent antioxydant puissant qui réduit l’activité de la NAD(P)H oxydase et la production de l’O-.2 dans le coeur et les vaisseaux. Le rétablissement de l’O-.2 à des valeurs normales par le traitement de rats SHR à l’AAS a été accompagné d’une atténuation de la hausse de la tension artérielle (TA) et d’une amélioration des fonctions endothéliales de la vasodilatation chez ces animaux [3]. Le traitement à l’AAS a aussi prévenu le stress oxydant, l’hypertension artérielle et l’hypertrophie cardiaque provoquées, chez le rat, par l’administration chronique d’angiotensine II (Ang II) [4], un agent causal majeur de la pathogénie de plusieurs maladies cardiovasculaires : athérosclérose, hypertension, insuffisance cardiaque et remodelage ou hypertrophie cardiaque [5]. Plusieurs études suggèrent donc que l’activation de la NAD(P)H oxydase et l’augmentation de la production de l’O-.2, qui y est associée, constituent l’un des mécanismes majeurs qui sous-tendent les effets délétères de l’activation des récepteurs AT1 sur le système cardiovasculaire. De plus, il a été proposé que l’Ang II contribue à augmenter, entre autres, la surexpression de la COX-2 dans les tissus cardiovasculaires. Nous avons donc cherché à évaluer les rôles respectifs des cyclo-oxygénases de type 1 et 2 (COX-1 et 2) pour contrer les effets inflammatoires et pro-oxydants de l’Ang II [6]. Les deux isoformes des COX convertissent l’acide arachidonique en différents types de prostaglandines et de thromboxanes. La COX-1 est exprimée de façon ubiquitaire dans la plupart des tissus de mammifère, principalement dans l’estomac, les plaquettes et les vaisseaux sanguins. L’activité de la COX-1 est constitutive des prostanoïdes dont elle assure la production de façon relativement stable. À l’opposé, la COX-2 est indétectable dans la plupart des tissus, mais peut être induite par plusieurs cytokines dans les macrophages, le cerveau, les chondrocytes, les fibroblastes et les cellules synoviales. Les agents anti-inflammatoires non-stéroïdiens inhibent l’activité des COX et sont divisés en trois classes, l’AAS (inhibiteur irréversible des COX-1 et COX-2) les inhibiteurs sélectifs de COX-2 (par exemple, rofécoxib) et les inhibiteurs non sélectifs de COX (par exemple, ibuprofène) [7]. Il n’existe aucune donnée montrant une relation causale entre l’activité des COX et le degré de stress oxydant, mais des études suggèrent que la COX-2 intervient dans l’amorce de la production de radicaux libres [8]. Une perfusion chronique d’Ang II (200 ng/kg/min) par des pompes osmotiques implantées sous la peau des rats augmente l’activité de la NAD(P)H oxydase et la production de l’O-.2 dans les tissus cardiovasculaires [6]. Parallèlement à cette augmentation progressive de l’O-.2, la TA s’élève graduellement et simultanément, l’administration chronique de l’Ang II augmente l’expression cardiaque de la COX-2 sans affecter l’expression de la COX-1 [6]. Nous avons observé que le traitement simultané avec l’AAS a normalisé l’expression de COX-2, la production de l’O-.2 et la TA chez ces animaux. Des effets similaires à ceux de l’AAS ont été observés après un traitement avec le rofécoxib. En effet, l’AAS exerce son action anti-Ang II par inhibition de l’expression des COX-2 et du stress oxydant qui est associé à l’activation de cette enzyme. En revanche, des inhibiteurs non sélectifs des COX (ibuprofène, indométacine) n’ont pas eu d’effets antioxydants ou préventifs …
Parties annexes
Références
- 1. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens 2000 ; 18 : 655-73.
- 2. Wu R, Millette E, Wu L, de Champlain J. Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2001 ; 19 : 741-8.
- 3. Wu R, Lamontagne D, de Champlain J. Antioxidative properties of acetylsalicylic Acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 2002 ; 105 : 387-92.
- 4. Wu R, Laplante MA, de Champlain J. Prevention of angiotensin II-induced hypertension, cardiovascular hypertrophy and oxidative stress by acetylsalicylic acid in rats. J Hypertension 2004 ; 22 : 793-801.
- 5. Nickenig G, Harrison DG. The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis. Part I : oxidative stress and atherogenesis. Circulation 2002 ; 105 : 393-6.
- 6. Wu R, Laplante MA, de Champlain J. Cyclo-oxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats. Hypertension 2005 ; 45 : 1139-44.
- 7. Warner TD, Giuliano F, Vojnovic I, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity : a full in vitro analysis. Proc Natl Acad Sci USA 1999 ; 96 : 7563-8.
- 8. Chenevard R, Hurlimann D, Bechir M , et al. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 2003 ; 107 : 405-9.
- 9. Young W, Mahboubi K, Haider A, et al. Cyclo-oxygenase-2 is required for tumor necrosis factor-alpha- and angiotensin II-mediated proliferation of vascular smooth muscle cells. Circ Res 2000 ; 86 : 906-14.
- 10. Hermida RC, Ayala DE, Calvo C, Lopez JE. Aspirin administered at bedtime, but not on awakening, has an effect on ambulatory blood pressure in hypertensive patients. J Am Coll Cardiol 2005 ; 46 : 975-83.