NouvellesNews

Un STRING lève le voile sur les mécanismes contrôlant l'expression des gènes HoxA STRING lifts the veil on the mechanisms controlling Hox genes expression[Notice]

  • François Spitz,
  • Carole Herkenne,
  • Christine Hinard et
  • Denis Duboule

…plus d’informations

  • François Spitz
    National Research Centre Frontiers in Genetics,
    Département de Zoologie et de Biologie animale,
    Université de Genève, Sciences III,
    quai Ernest Ansermet 30,
    1211 Genève 4,
    Suisse.
    Francois.Spitz@zoo.unige.ch

  • Carole Herkenne
    National Research Centre Frontiers in Genetics,
    Département de Zoologie et de Biologie animale,
    Université de Genève, Sciences III,
    quai Ernest Ansermet 30,
    1211 Genève 4,
    Suisse.

  • Christine Hinard
    Service de Génétique médicale,
    Hôpitaux Universitaires de Genève,
    rue Michel Servet 1,
    1211 Genève,
    Suisse.

  • Denis Duboule
    National Research Centre Frontiers in Genetics,
    Département de Zoologie et de Biologie animale,
    Université de Genève, Sciences III,
    quai Ernest Ansermet 30,
    1211 Genève 4,
    Suisse.

Au cours de l’évolution, la structure des chromosomes évolue sous l’effet de réarrangements chromosomiques, tels que délétions, duplications, fusion de chromosomes, translocation et inversions. Quand on compare chez différentes espèces l’arrangement relatif des gènes, il est frappant de voir que celui-ci est parfois extrêmement conservé et forme de grands blocs de synténie. Plusieurs études chez les mammifères ainsi que chez d’autres espèces ont montré que les gènes adjacents sont souvent co-exprimés, suggérant un lien fonctionnel entre activité transcriptionnelle et organisation du génome [1]. Un tel lien est illustré de manière extrême par les gènes homéotiques (Hox). Ces gènes codent des facteurs de transcription à homéoboîte qui contrôlent l’identification des structures le long de l’axe antéro-postérieur de l’embryon [2]. Cette fonction, cruciale pour la morphogenèse de l’embryon, est intimement liée à la répartition de ces gènes le long des chromosomes. Ils sont en effet regroupés en clusters (complexes) et leur profil d’expression est colinéaire à leur position au sein du complexe. Cette organisation a été extrêmement conservée au cours de l’évolution (avec toutefois quelques exceptions [3]) et, chez les vertebrés, 9 à 11 gènes Hox sont regroupés dans des régions d’à peu près 100 kb. Il est communément accepté que l’organisation particulière des gènes Hox joue un rôle crucial pour coordonner leur expression le long de l’axe antéro-postérieur dans l’espace, mais surtout dans le temps, ainsi que dans d’autres domaines d’expression acquis plus tard au cours de l’évolution, comme le tube digestif, ou les membres et le système uro-génital [4]. Cependant, les mécanismes associés ne sont pas encore précisément connus. Afin de tester directement l’importance du clustering pour les gènes Hox, de localiser les enhancers associés à leurs domaines d’expression et de mieux comprendre les mécanismes impliqués dans la colinéarité axiale de ces gènes, nous avons décidé de séparer un des quatre complexes Hox que comporte la souris en deux morceaux indépendants, par le biais d’une inversion chromosomique ciblée [5]. La technique utilisée en général pour produire de tels réarrangements repose sur plusieurs étapes de recombinaison homologue permettant d’introduire dans le génome de cellules ES murines des sites de reconnaissance loxP. Puis, l’expression transitoire de la recombinase CRE permet de sélectionner le réarrangement voulu entre ces sites, au terme de longues et délicates manipulations des cellules ES. Comme nous disposions déjà de souris comportant des sites loxP dans le clusterHoxD, et que des lignées comportant des sites loxP à plusieurs cM du complexe avaient été établies par d’autres groupes, nous avons opté pour une approche de recombinaison in vivo, ne nécessitant que des croisements successifs. Cette nouvelle stratégie (STRING) nous a permis, en 5 générations et après environ 500 génotypages, d’isoler une souris comportant l’inversion chromosomique de 7 cM souhaitée, entre le locus HoxD et la partie 3’ du gene Itga6(Figure 1). Nous avons choisi comme point de cassure la région entre les gènes Hoxd10 et Hoxd11, car ceux-ci présentent des profils d’expression très similaires et qui recouvrent la plupart des sites d’expression des gènes du complexe. Quand ce dernier est « cassé » en deux, on observe une partition de ces domaines d’expression, entre l’un ou l’autre des demi-complexes (Figure 2). Les gènes associés au demi-complexe contenant Hoxd11 conservent leur expression dans la partie distale du bourgeon de membre (l’autopode) qui formera les doigts, ainsi que dans le bourgeon génital, mais ne sont plus détectés dans la hernie intestinale ou dans la partie proximale des membres. Inversement, Hoxd10 est exprimé dans ces deux derniers domaines, mais pas dans le bourgeon génital, ni dans l’autopode. Cette ségrégation des différents domaines …

Parties annexes