Résumés
Résumé
Les PNA (peptide nucleic acids) sont des molécules de synthèse, analogues des acides nucléiques, dans lesquelles le squelette phosphodiester a été remplacé par une chaîne pseudo-peptidique sur laquelle viennent se fixer les bases puriques et pyrimidiques. Du fait de cette structure, les molécules de PNA ne sont pas chargées et s’apparient aux séquences d’acides nucléiques avec une remarquable affinité et une très forte spécificité. De plus, les PNA présentent une remarquable stabilité et une excellente résistance aux protéases et aux nucléases. Depuis leur mise au point en 1991, les PNA ont été incorporées dans de nombreux protocoles d’études et de diagnostics génétiques pour la recherche de mutations, la coupure dirigée de l’ADN ou la thérapie génique. L’élaboration récente de sondes PNA pour l’identification in situ des chromosomes humains a permis d’adapter avec succès cette nouvelle technologie à l’analyse cytogénétique humaine.
Summary
The peptide nucleic acids (PNAs) constitute a remarkable new class of synthetic nucleic acids analogs, in which the sugar phosphate backbone is replaced by repeating N-(2-aminoethyl) glycine units linked by amine bonds and to which the nucleobases are fixed. This structure gives to PNAs the capacity to hybridize with high affinity and specificity to complementary RNA and DNA sequences, and a great resistance to nucleases and proteinases. Originally conceived as ligands for the study of double stranded DNA, the unique physico-chemical properties of PNAs have led to the development of a large variety of research and diagnostic assays, including antigene and antisense therapy and genome mapping. Several sensitive and robust PNA-dependent methods have been designed for modulating polymerase chain reactions, detecting genomic polymorphisms and mutations or capturing nucleic acids. Over the last few years, the use of PNAs has proven its powerful usefulness in cytogenetics for the rapid in situ identification of human chromosomes and the detection of aneuploidies. Recent studies have reported the successful use of chromosome-specific PNA probes on human lymphocytes, amniocytes, spermatozoa as well as on isolated oocytes and blastomeres. Muticolor PNA protocols have been described for the identification of several human chromosomes, indicating that PNAs could become a powerful tool for in situ chromosomal investigation.
Parties annexes
Références
- 1. Saison-Behmoaras T. Les PNA : une décennie après, quels espoirs ? Med Sci (Paris) 2004 ; 20 : 148-50.
- 2. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991 ; 254 : 1497-500.
- 3. Ray A, Norden B. Peptide nucleic acid (PNA) : its medical and biotechnical applications and promise for the future. FASEB J 2000 ; 14 : 1041-60.
- 4. Gambari R. Peptide nucleic acids (PNAs) : a tool for the development of gene expression modifiers. Curr Pharma Design 2001 ; 7 : 1839-62.
- 5. Nielsen PE, Egholm M. An introduction to peptide nucleic acid. Curr Issues Mol Biol 1999 ; 1: 89-104.
- 6. Hanvey JC, Peffer NJ, Bisi JE, et al. Antisense and antigene properties of peptide nucleic acids. Science 1992 ; 258 : 1481-5.
- 7. Vickers TA, Griffity MC, Ramasamy K, et al. Inhibition of NF-kappaB specific transcriptional activation by PNA stand invasion. Nucleic Acids Res 1995 ; 23 : 3003-8.
- 8. Boffa LC, Morris PL, Carpeneto EM, et al. Invasion of the CAG triplet repeats by a complementary peptide nucleic acid inhibits transcription of the androgen receptor and TATA binding protein genes and correlates with refolding of an active nucleosome containing a unique AR gene sequence. J Biol Chem 1996 ; 271: 13228-33.
- 9. Nielsen PE, Egholm M, Buchardt O. Sequence specific transcription arrest by PNA bound to the template strand. Gene 1994 ; 149 : 139-45.
- 10. Wang G, Xu X, Pace DA, et al. Peptide nucleic acid (PNA) binding-mediated induction of human gamma-globin gene expression. Nucleic Acids Res 1999 ; 27 : 2806-13.
- 11. Doyle DF, Braasch DA, Simmons CG, et al. Inhibition of gene expression inside cells by peptide nucleic acids : effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry 2001 ; 40 : 53-64.
- 12. Mologni L, Lecoutre P, Nielsen PE, Gambacorti-Passerini C. Additive antisense effects of different PNAs on the in vitro translation of the PML/RARalpha gene. Nucleic Acids Res 1998 ; 26 : 1934-8.
- 13. Tylers BM, Jansen K, McCormick DJ, et al. Peptide nucleic acids targeted to the neurotensin receptor and administrated ip cross the blood-brain barrier and specifically reduce gene expression. Proc Natl Acad Sci USA 1999 ; 96 : 7053-8.
- 14. Fraser GL, Holmgren J, Clarke PB, Wahlesteds C. Antisense inhibition of delta-opioid receptor gene function in vivo by peptide nucleic acids. Mol Pharmacol 2000 ; 57 : 725-31.
- 15. Pooga H, Soomets U, Hällbrink M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 1998 ; 16 : 857-61.
- 16. Cutrona G, Carpaneto EM, Ulivi M, et al. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat Biotechnol 2000 ; 18 : 300-3.
- 17. Norton JC, Piatyszek MA, Wright WE, et al. Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 1996 ; 14 : 615-8.
- 18. Nastruzzi C, Cortesi R, Esposito E, et al. Liposomes as carriers for DNA-PNA hybrids. J Control Release 2000 ; 10 : 237-49.
- 19. Misra HS, Pandey PK, Modak MJ, et al. Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. Biochemistry 1998 ; 37 : 1917-25.
- 20. Isacsson J, Cao H, Ohlsson L, et al. Rapid and specific detection of PCR products using light-up probes. Mol Cell Probes 2000 ; 14 : 321-8.
- 21. Demidov V, Frank-Kamenetskii MD, Egholm M, et al. Sequence specific double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease SI. Nucleic Acids Res 1993 ; 21 : 2103-7.
- 22. Perry-O’Keefe H, Yao XW, Coull JM, et al. Peptide nucleic acid pre-gel hybridization : an alternative to Southern hybridization. Proc Natl Acad Sci USA 1996 ; 93 : 14670-5.
- 23. Ross PL, Lee K, Belgrader P. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Anal Chem 1997 ; 69 : 4197-202.
- 24. Bukanov NO, Demidov VV, Nielsen PE, Frank-Kamenetskii MD. PD-loop : a complex of duplex DNA with an oligonucleotide. Proc Natl Acad Sci USA 1998 ; 95 : 5516-20.
- 25. Lansdorp PM, Verwoerd NP, van de Rijke FM, et al. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 1996 ; 5 : 685-91.
- 26. Zijlman MJM, Martens UM, Poon SSS, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 1997 ; 94 : 7423-8.
- 27. Chen C, Wu B, Wei T, et al. Unique chromosome identification and sequence-specific structural analysis with short PNA oligomers. Mamm Genome 2000 ; 11 : 384-91.
- 28. Taneja KL, Chavez EA, Coull J, Lansdorp PM. Multicolor fluorescence in situ hybridization with peptide nucleic acid probes for enumeration of specific chromosomes in human cells. Gen Chrom Cancer 2001 ; 30 : 57-63.
- 29. Chen C, Hong YK, Ontiveros SD, et al. Single base discrimination of CENP-B repeats on mouse and human chromosomes with PNA-FISH. Mamm Genome 1999 ; 10 : 13-8.
- 30. Pellestor F, Andréo B, Taneja K, Williams B. PNA on human sperm : a new approach for in situ aneuploidy estimation. Eu J Hum Genet 2003 ; 11: 337-41.
- 31. Paulasova P, Andréo B, Diblik J, et al. The peptide nucleic acids (PNAs) as probes for chromosomal analysis : application to human oocytes, polar bodies and preimplantation embryos. Mol Hum Reprod 2004 ; 10 : 467-72.
- 32. Agerholm IE, Ziebe S, Williams B, et al. Sequential FISH analysis using competitive displacement of labelled peptide nucleic acid probes for eight chromosomes in human blastomeres. Hum Reprod 2005 ; 20 : 1072-7.
- 33. Matysiak S, Reuthner F, Hoheisel JD. Automating parallel peptide synthesis for the production of PNA library arrays. Biotechniques 2001 ; 31 : 896-904.