Résumés
Résumé
Des mutations dans les gènes FANC sont responsables de l’anémie de Fanconi (AF), une maladie génétique de phénotype complexe incluant une pancytopénie, des malformations congénitales et une prédisposition élevée au cancer. L’augmentation par les agents pontant l’ADN de la fréquence des aberrations chromosomiques, une caractéristique de l’AF, est utilisée pour le diagnostic. Parmi les onze gènes FANC, neuf sont identifiés. Huit de ces gènes sont localisés sur des autosomes, tandis que FANCB est situé sur le chromosome X. L'un des gènes FANC est BRCA2, impliqué dans la prédisposition génétique au cancer du sein et/ou de l’ovaire. Sept des protéines FANC s’associent pour former un complexe à géométrie variable dépendant de sa localisation subcellulaire, tandis que FANCD1 (BRCA2), FANCD2, FANCI et FANCJ ne sont pas associées au complexe. La mono-ubiquitinylation de FANCD2, dépendante du complexe, jouerait un rôle important dans la gestion des pontages de l’ADN. Les protéines FANC et BRCA1, étroitement associées, participent, entre autres, avec les protéines ATM, NBS1 et ATR, à un réseau multiprotéique impliqué dans la détection, la signalisation et la réparation des lésions bloquant la réplication de l’ADN.
Summary
Fanconi anemia (FA), a rare inherited disorder, exhibits a complex phenotype including progressive bone marrow failure, congenital malformations and increased risk of cancers, mainly acute myeloid leukaemia. At the cellular level, FA is characterized by hypersensitivity to DNA cross-linking agents and by high frequencies of induced chromosomal aberrations, a property used for diagnosis. FA results from mutations in one of the eleven FANC(FANCA to FANCJ) genes. Nine of them have been identified. In addition, FANCD1 gene has been shown to be identical to BRCA2, one of the two breast cancer susceptibility genes. Seven of the FANC proteins form a complex, which exists in four different forms depending of its subcellular localisation. Four FANC proteins (D1(BRCA2), D2, I and J) are not associated to the complex. The presence of the nuclear form of the FA core complex is necessary for the mono-ubiquitinylation of FANCD2 protein, a modification required for its re-localization to nuclear foci, likely to be sites of DNA repair. A clue towards understanding the molecular function of the FANC genes comes from the recently identified connection of FANC to the BRCA1, ATM, NBS1 and ATR genes. Two of the FANC proteins (A and D2) directly interact with BRCA1, which in turn interacts with the MRE11/RAD50/NBS1 complex, which is one of the key components in the mechanisms involved in the cellular response to DNA double strand breaks (DSB). Moreover, ATM, a protein kinase that plays a central role in the network of DSB signalling, phosphorylates in vitro and in vivo FANCD2 in response to ionising radiations. Moreover, the NBS1 protein and the monoubiquitinated form of FANCD2 seem to act together in response to DNA crosslinking agents. Taken together with the previously reported impaired DSB and DNA interstrand crosslinks repair in FA cells, the connection of FANC genes to the ATM, ATR, NBS1 and BRCA1 links the FANC genes function to the finely orchestrated network involved in the sensing, signalling and repair of DNA replication-blocking lesions.
Parties annexes
Références
- 1. Fanconi G. Familiäre infantile perniziosaartige Anämie (perniziöses Blutbild und Konstitution). Jahrb Kinderheilk 1927 ; 117 : 257-80.
- 2. Auerbach AD, Buchwald M, Jonje A. Fanconi anemia. In : Vogelstein B, Kinzler KW, eds. The genetic basis of human cancer. New York : McGraw-Hill, 1998 : 317-32.
- 3. D’Andrea AD, Grompe M. The Fanconi anemia/BRCA pathway. Nat Rev Cancer 2003 ; 3 : 23-34.
- 4. Fanconi G. Familial constitutional panmyelocytopathy, Fanconi’s anemia (FA). I. Clinical aspects. Semin Hematol 1967 ; 4 : 233-40.
- 5. Swift M. Fanconi’s anemia in the genetics of neoplasia. Nature 1971 ; 230 : 370-3.
- 6. Verlander PC, Kaporis A, Liu Q, et al. Carrier frequency of the IVS4+4A>T mutation of the Fanconi anemia FAC in the Ashkenasi Jewish population. Blood 1995 ; 86 : 4034-8.
- 7. Schroeder TM, Kurt R. Spontaneous chromosome breakage and high incidence of leukemia in inherited disease. Blood 1971 ; 37 : 96-112.
- 8. Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nature Rev Genet 2001 ; 2 : 446-57.
- 9. Buchwald M, Moustacchi E. Is Fanconi anemia caused by a defect in the processing of DNA damage ? Mutation Res 1998 ; 408 : 75-90.
- 10. Auerbach AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol 1993 ; 21 : 731-3.
- 11. Auerbach AD, Allen RG. Leukemia and preleukemia in Fanconi anemia patients : a review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet 1991 ; 51 : 1-15.
- 12. Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood 2003 ; 101 : 822-6.
- 13. Gluckman E, BroxmeyerR HE, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N Engl J Med 1989 ; 321 : 1174-8.
- 14. Gregory JJ., Wagner JE, Verlander PC, et al. Somatic mosaicism in Fanconi anemia : evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci USA 2001 ; 98 : 2532-7.
- 15. Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002 ; 297 : 606-9.
- 16. Meetei AR, de Winter JP, Medhurst AL, et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet 2003 ; 35 : 165-70.
- 17. Meetei AR, Levitus M, Xue Y, et al. X-linked inheritance of Fanconi anemia complementation group B. Nature Genet 2004 ; 36 : 1219-24.
- 18. Warren M, Smith A, Partridge N, et al. Structural analysis of the chicken BRCA2 gene facilitates identification of functional domains and disease causing mutations. Hum Mol Genet 2002 ; 11 : 841-51.
- 19. Timmers C, Taniguchi T, Hejna J, et al. Positional cloning of a novel Fanconi FANCD2. Mol Cell 2001 ; 7 : 241-8.
- 20. Garcia-Higuera I, Kuang Y, Naf D, et al. The Fanconi anemia proteins, FANCA, FANCC and FANCG/XRCC9 interact in a functional nuclear complex. Mol Cell Biol 1999 ; 19 : 4866-73.
- 21. Pace P, Johnson M, Tan WM, et al. FANCE : the link between Fanconi anemia complex assembly and activity. EMBO J 2002 ; 21 : 3414-23.
- 22. Levitus M, Rooimans MA, Steltenpool J, et al. Heterogeneity in Fanconi anemia : evidence for 2 new genetic subtypes. Blood 2004 ; 103 : 2498-2503.
- 23. Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001 ; 7 : 249-62.
- 24. Medhurst AL, Huber PA, Waisfisz Q, et al. Direct interaction of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum Mol Genet 2001 ; 10 : 423-9.
- 25. Gordon SM, Buchwald M. Fanconi anemia protein complex : mapping proteins interactions in the yeast 2- and 3-hybrid systems. Blood 2003 ; 102 : 136-41.
- 26. Thomashevski A, High AA, Drozd M, et al. The Fanconi anemia core complex forms four complexes of different sizes in different subcellular compartments. J Biol Chem 2004 ; 279 : 26201-9.
- 27. Schimamura A, de Oca RM, Svenson JL, et al. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood 2002 ; 100 ; 4649-54.
- 28. Soulier J, Leblanc T, Larghero J, et al., Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood 2005 ; 105 :1329-36.
- 29. Folias A, Matkovic M, Bruun D, et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum MolGenet 2002 ; 11 : 2591-7.
- 30. Hussain SE, Witt PA, Huber AL, et al. Direct interaction of the Fanconi anemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 2003 ; 12 : 2503-10.
- 31. Wang XZ, Andreassen PR, d’Andrea AD. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 2004 ; 24 : 5850-62.
- 32. Nijman SMB, Huang TT, Dirac AMG, et al. The deuibiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 2005 ; 17 : 331-9.
- 33. Taniguchi T, Garcia-Higuera I, Xu B, et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002 ; 109 : 459-72 .
- 34. Nakanishi K, Taniguchi T, Ranganathan V, et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 2002 ; 4 : 913-20.
- 35. Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004; 23 : 1178-87.
- 36. Andreassen PR, D’Andrea A, Taniguchi T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 2004 ; 18 : 1958-63.
- 37. Shiloh Y. ATM and related protein kinases : safeguarding genome integrity. Nat Rev Cancer 2003 ; 3 : 155-8.
- 38. D’Amours D, Jackson SP. The Mre11 complex : at the crossroads of DNA repair and checkpoint signaling. Nat Rev Mol Cell Biol 2002 ; 5 : 317-27.
- 39. FujiwaraY, Tatsumi M. Cross-link repair in human cells and its possible defect in Fanconi’s anemia cells. J Mol Biol 1977 ; 113 : 635-49.
- 40. Papadopoulo D, Averbeck D, Moustacchi E. The fate of 8-methoxypsoralen photoinduced DNA interstrand cross-links in Fanconi’s anemia cells of defined genetic complementation groups. Mutat Res 1987 ; 184 : 271-80.
- 41. Rousset S, Nocentini S, Revet B, Moustacchi E. Molecular analysis by electron microscopy of the removal of psoralen-photoinduced DNA cross-links in normal and Fanconi’s anemia fibroblasts. Cancer Res 1990 ; 50 : 2443-8.
- 42. Papadopoulo D, Guillouf C, Mohrenweiser H, Moustacchi E. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc Natl Acad Sci USA 1990 ; 87 : 8383-7.
- 43. Lambert MW, Tsongalis GJ, Lambert WC, et al. Defective DNA endonuclease activities in Fanconi’s anemia cells, complementation groups A and B. Mutat Res 1992 ; 273 : 57-71.
- 44. Escarceller M, Buchwald M, Singleton BK, et al. Fanconi anemia C gene product plays a role in the fidelity of blunt DNA end-joining. J Mol Biol 1998 ; 279 : 375-85.
- 45. Lundberg R, Mavinakere M, Campbell C. Deficient DNA end joining activity in extracts from Fanconi anemia fibroblasts. J Biol Chem 2001 ; 276 : 9543-9.
- 46. Centurion SA, Kuo HR, Lambert WC. Damage-resistant DNA synthesis in Fanconi anemia cells treated with a DNA cross-linking agent. Exp Cell Res 2000 ; 260 ; 216-21.
- 47. Sala-Trepat M, Rouillard D, Escarceller M, et al. The arrest of S-phase progression is impaired in Fanconi anemia cells. Exp Cell Res 2000 ; 260 : 208-15.
- 48. Dutrillaux B, Aurias A, Dutrillaux AM, et al. The cell cycle of lymphocytes in Fanconi anemia. Hum Genet 1992 ; 62 : 327-32.
- 49. Hursh B, Shimamura A, Moreau L, et al. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 2004 ; 103 : 2554 -9.
- 50. Tischkowitz MD, Morgan NV, Grimwade D, et al. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia. Leukemia 2004 ; 18 : 420-5.
- 51. Narayan G, Arias-Pulido H, Nandula SV, et al. Promoter hypermethylation of FANCF : disruption of Fanconi anemia-BRCA pathway in cervical cancer. Cancer Res 2004 ; 64 : 2994-7.