Résumés
Résumé
Des conditions ou agents déstabilisant l'environnement cellulaire altèrent souvent le repliement des protéines. Suivant son intensité, ce phénomène peut induire une agrégation irréversible des protéines et entraîner la mort des cellules. Un mécanisme cellulaire de défense contre cette atteinte à l'intégrité des protéines existe, qui est conservé au cours de l'évolution. En effet, la cellule réagit aux stress altérant le repliement des protéines en activant l'expression d'un petit nombre de gènes codant pour des protéines spécialisées, les Hsp (heat shock proteins). Certaines de ces protéines ont des activités de chaperons moléculaires aidant au repliement des polypeptides ayant une structure altérée. Mais la cellule contient également des homologues de Hsp constitutifs, non induits par un stress, qui participent au contrôle de qualité des protéines. Ces Hsp constitutives sont impliquées dans le repliement des protéines après leur synthèse, dans l'assemblage de structures multiprotéiques dans le réticulum endoplasmique, dans le dépliement des polypeptides lors de leur passage à travers les membranes ou dans le masquage de certaines mutations altérant le repliement des protéines. Les pathologies neurodégénératives et cancéreuses sont données en exemple pour souligner le fait qu'une concentration élevée en Hsp peut, selon la maladie concernée, être bénéfique ou délétère pour la cellule.
Summary
Exposure to different conditions or agents that destabilize cell homeostasis often alters protein folding. Depending on stress intensity irreversible protein aggregation and cell death can occur. Cells have developed a conserved defense mechanism aimed at reducing the deleterious effects induced by protein folding alteration. This mechanism is characterized by the expression of a small number of genes encoding specific proteins, named Hsps. Several of these proteins act as molecular chaperones through their ability to refold polypeptides with an altered conformation. Moreover, constitutive Hsps homologues have been characterized that participate in the folding of newly made polypeptides, in the assembly of protein complexes in the endoplasmic reticulum, in the translocation of polypeptides through membranes or in masking mutations that alter protein folding. Neurodegeneratives and cancereous diseases are discussed as examples where high levels of Hsp expression can be either beneficial or deleterious to the cells.
Parties annexes
Références
- 1. Ritossa FM. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp Cell Res 1964 ; 35 : 601-7.
- 2. Schiller P, Amin J, Ananthan J, et al. Cis-acting elements involved in the regulated expression of a human HSP70 gene. J Mol Biol 1988 ; 203 : 97-105.
- 3. Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986 ; 232 : 522-4.
- 4. Morimoto RI. Regulation of the heat shock transcriptional response: cross-talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998 ; 12 : 3788-96.
- 5. Ellis RJ, Van der Vies SM, Hemmingsen SM. The molecular chaperone concept. Biochem Soc Symp 1989 ; 55 : 145-53.
- 6. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat RevMol Cell Biol 2004 ; 5 ; 781-91.
- 7. Ehrnsperger M, Lilie H, Gaestel M, Buchner J. The dynamics of hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 1999 ; 274 : 14867-74.
- 8. McDonough H, Patterson C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 2003 ; 8 : 303-8.
- 9. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994 ; 79 : 13-21.
- 10. Arrigo AP, Tanaka K, Goldberg AL, Welch WJ. Identity of the 19S `prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 1988 ; 331 : 192-4.
- 11. Peters JM. Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 1994 ; 19 : 377-82.
- 12. Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001 ; 83 : 301-10.
- 13. Demasi M, Davies KJ. Proteasome inhibitors induce intracellular protein aggregation and cell death by an oxygen-dependent mechanism. FEBS Lett 2003 ; 542 : 89-94.
- 14. Lee MH, Hyun DH, Jenner P, Halliwell B. Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 2001 ; 78 : 32-41.
- 15. Robertson JD, Datta K, Biswal SS, Kehrer JP. Heat-shock protein 70 antisense oligomers enhance proteasome inhibitor-induced apoptosis. Biochem J 1999 ; 344 : 477-85.
- 16. Agarwal S, Sohal RS. Aging and protein oxidative damage. Mech Ageing Dev 1994 ; 75 : 11-9.
- 17. Grune T, Shringarpure R, Sitte N, Davies K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A Biol Sci Med Sci 2001 ; 56 : B459-67.
- 18. Carrard G, Bulteau A, Petropoulos I, Friguet B. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 2002 ; 34 : 1461-70.
- 19. Conconi M, Petropoulos I, Emod I, et al. Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem J 1998 ; 333 : 407-15.
- 20. De Maio, A. Heat shock proteins: facts, thoughts, and dreams. Shock 1999 ; 11 : 1-12.
- 21. Mestril R. The use of transgenic mice to study cytoprotection by the stress proteins. Methods 2005 ; 35 : 165-9.
- 22. Deshaies RJ, Koch BD, Schekman R. The role of stress proteins in membrane biogenesis. Trends Biochem Sci 1988 ; 13 : 384-8.
- 23. Beckmann RP, Mizzen LE, Welch WJ. Interaction of Hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 1990 ; 248 : 850-4.
- 24. Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 2002 ; 59 : 1640-8.
- 25. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998 ; 396 : 336-42.
- 26. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998 ; 92 : 351-66.
- 27. Arrigo AP. In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 2005 ; 94 : 241-6.
- 28. Mehlen P, Mehlen A, Godet J, Arrigo AP. Hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 1997 ; 272 : 31657-65.
- 29. Mehlen P, Schulze-Osthoff K, Arrigo AP. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 1996 ; 271 : 16510-4.
- 30. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000 ; 2 : 645-52.
- 31. Paul C, Manero F, Gonin S, et al. Hsp27 as a negative regulator of cytochrome c release. Mol Cell Biol 2002 ; 22 : 816-34.
- 32. Halliwell B. Hypothesis. Proteasomal dysfunction: a primary event in neurogeneration that leads to nitrative and oxidative stress and subsequent cell death. Ann NY Acad Sci 2002 ; 962 : 182-94.
- 33. Bates G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 2003 ; 361 : 1642-4.
- 34. Biasini E, Fioriti L, Ceglia I, et al. Proteasome inhibition and aggregation in Parkinson's disease: a comparative study in untransfected and transfected cells. J Neurochem 2004 ; 88 : 545-53.
- 35. Venkatraman R, Wetzel P, Tanaka M, et al. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell 2004 ; 14 : 95-104.
- 36. Wyttenbach A. Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci 2004 ; 23 : 69-96.
- 37. Wyttenbach A, Sauvageot O, Carmichael J, et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002 ; 11 : 1137-51.
- 38. Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004 ; 36 : 585-95.
- 39. Jaattela M. Escaping cell death: survival proteins in cancer. Exp Cell Res 1999 ; 248 : 30-43.
- 40. Chiosis G, Vilenchik M, Kim J, Solit D. Hsp90: the vulnerable chaperone. Drug Discov Today 2004 ; 9 : 881-8.