Résumés
Résumé
Le repliement des protéines est un domaine d'un intérêt fondamental. Il concerne les mécanismes moléculaires par lesquels une chaîne polypeptidique naissante, résultant de l'information génétique, acquiert sa structure tridimensionnelle, condition nécessaire à l'expression de sa fonction. À l'ère post-génomique, la connaissance des principes fondamentaux impliqués dans ce processus est nécessaire à l'exploitation de l'information contenue dans le nombre croissant de gènes séquencés. Le repliement des protéines a également des applications pratiques en médecine, dans la compréhension des différentes maladies associées aux repliements incorrects et à l'agrégation subséquente. Les mécanismes moléculaires impliqués dans ce processus complexe ont fait l'objet de nombreuses études. Des avancées significatives ont été obtenues depuis le postulat d'Anfinsen jusqu'à la vision moderne qui décrit le repliement en termes de paysage énergétique. Élucider les mécanismes de repliement représente aujourd'hui l'un des principaux enjeux de la biologie. C'est un domaine de recherche extrêmement actif qui comporte des aspects de biologie, de biochimie, de chimie, d'informatique et de physique.
Summary
Protein folding is a topic of fundamental interest since it concerns the mechanisms by which the genetic information is translated into the three-dimensional and functional structure of proteins. In these post-genomic times, the knowledge of the fundamental principles is required in the exploitation of the information contained in the increasing number of sequenced genomes. Protein folding also has a practical application in the understanding of different pathologies associated with protein misfolding and aggregation. Significant advances have been made ranging from the Anfinsen postulate to the ‟new view” which describes the folding process in terms of an energy landscape. These insights arise from both theoretical and experimental studies. Unravelling the mechanisms of protein folding represents one of the most challenging problems to day. This is an extremely active field of research involving aspects of biology, chemistry, biochemistry, computer science and physics.
Parties annexes
Références
- 1. Monod J. Le hasard et la nécessité. Paris : Seuil, 1976.
- 2. Wu H. Studies on denaturation of proteins: a theory of denaturation. Chin J Physiol 1931 ; 3 : 321-44.
- 3. Anson ML. Denaturation of proteins and properties of protein groups.Adv Protein Chem 1945 ; 2 : 121-282.
- 4. Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem 1959 ; 14 : 1-67.
- 5. Ghélis C, Yon JM. Protein folding. New York : Academic Press, 1982.
- 6. Anfinsen CB, Haber E, Sela M, White FW. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 1961 ; 47 : 1309-14.
- 7. Anfinsen CB. Principles that govern protein folding. Science 1973 ; 181 : 223-30.
- 8. Levinthal C. Are there pathways for protein folding? J Chem Phys 1968 ; 65 : 44-5.
- 9. Tanford C. Protein denaturation. Adv Protein Chem 1968 ; 23 : 121-282.
- 10. Brandts JF. Thermodynamics of protein denaturation. J Am Chem Soc 1964 ; 86 : 4291-301 et 4302-14.
- 11. Privalov PL, Keshinaschvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 1974 ; 86 : 665-84.
- 12. Fersht AN. Nucleation mechanism in protein folding. Curr Opin Sruct Biol 1997 ; 7 : 3-9.
- 13. Baldwin RL. Intermediates in protein folding reactions and the mechanism of protein folding. Ann Rev Biochem 1975 ; 41 : 453-75.
- 14. Kim PS, Baldwin RL. Intermediate in the folding reactions of small proteins. Ann Rev Biochem 1990 ; 59 : 631-60.
- 15. Ptitsyn OB, Rashin AA. Stagewise mechanism of protein folding. Doklady Akademii Nauk SSSR 1973 ; 213 : 473-5.
- 16. Chothia C. Principles which determine the structure of proteins. Ann Rev Biochem 1974 ; 53 : 537-72.
- 17. Karplus M, Weaver DL. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci 1994 ; 3 : 650-68.
- 18. Dill KA. Theory for folding and stability of globular proteins. Biochemistry 1985 ; 24 : 1501-9.
- 19. Harrison SC, Durbin R. Is there a single pathway for the folding of a polypeptide chain? Proc Natl Acad SciUSA 1985 ; 82 : 4028-30.
- 20. Ikai A, Tanford C. Kinetics of unfolding and refolding of proteins. I. Mathematical analysis. J Mol Biol 1973 ; 73 : 145-54.
- 21. Hagerman PJ. Kinetic analysis of the reversible folding reactions of small proteins: application to the folding of lysozyme and cytochrome c. Biopolymers 1977 ; 16 : 731-47.
- 22. Ptitsyn OB. Molten globule and protein folding. Adv Protein Chem 1995 ; 47 : 83-229.
- 23. Ogushi M, Wada A. Molten globule state: a compact form of protein with mobile side-chains. FEBS Lett 1983 ; 164 : 20-4.
- 24. Ptitsyn OB, Pain R, Semisotnov G, et al. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 1990 ; 26 : 21-4.
- 25. Chaffotte AF, Cadieux C, Guillou Y, Goldberg ME. A possible folding intermediate: the C proteolytic domain of tryptophane synthase β chain folds in less than 4 milliseconds into a condensed state with non native-like secondary structures. Biochemistry 1992 ; 31 : 4303-8.
- 26. Arai M, Kuwajima K. Role of molten globule state in protein folding. Adv Protein Chem 2000 ; 57 : 209-82.
- 27. Pecorari F, Minard P, Desmadril M, Yon JM. Occurrence of transient multimeric species during the refolding of a monomeric protein. J Biol Chem 1996 ; 271 : 5270-6.
- 28. Accounts of Chemical Research (special issue on protein folding) 1998 ; 11 (volume consacré aux résultats obtenus par les méthodes de cinétique ultrarapide).
- 29. Wolynes PG, Onuchic JN, Thuramalai D. Navigating the folding routes. Science 1995 ; 267 : 1618-20.
- 30. Yon JM. Aggregation, protein. In : Meyers RA, ed. Encyclopedia of molecular cell biology and molecular medicine. New York: John Wiley, 2004 : 23-52.
- 31. Dill KA, Chan HS. From Levinthal to pathways to funnels. Nat Struct Biol 1997 ; 4 : 10-9.
- 32. Weil JH. Biochimie générale, 8e ed. Paris : Masson, 1997 : 31-2.